24,900 research outputs found

    Dynamics of delay induced composite multi-scroll attractor and its application in encryption

    Get PDF
    This work was supported in part by NSFC (60804040, 61172070), Key Program of Nature Science Foundation of Shaanxi Province (2016ZDJC-01), Innovative Research Team of Shaanxi Province(2013KCT-04), Fok Ying Tong Education Foundation Young Teacher Foundation(111065), Chao Bai was supported by Excellent Ph.D. research fund (310-252071603) at XAUT.Peer reviewedPostprin

    Investigation of the complex dynamics and regime control in Pierce diode with the delay feedback

    Full text link
    In this paper the dynamics of Pierce diode with overcritical current under the influence of delay feedback is investigated. The system without feedback demonstrates complex behaviour including chaotic regimes. The possibility of oscillation regime control depending on the delay feedback parameter values is shown. Also the paper describes construction of a finite-dimensional model of electron beam behaviour, which is based on the Galerkin approximation by linear modes expansion. The dynamics of the model is close to the one given by the distributed model.Comment: 18 pages, 6 figures, published in Int. J. Electronics. 91, 1 (2004) 1-1

    Synchronization in an array of linearly stochastically coupled networks with time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2007 Elsevier LtdIn this paper, the complete synchronization problem is investigated in an array of linearly stochastically coupled identical networks with time delays. The stochastic coupling term, which can reflect a more realistic dynamical behavior of coupled systems in practice, is introduced to model a coupled system, and the influence from the stochastic noises on the array of coupled delayed neural networks is studied thoroughly. Based on a simple adaptive feedback control scheme and some stochastic analysis techniques, several sufficient conditions are developed to guarantee the synchronization in an array of linearly stochastically coupled neural networks with time delays. Finally, an illustrate example with numerical simulations is exploited to show the effectiveness of the theoretical results.This work was jointly supported by the National Natural Science Foundation of China under Grant 60574043, the Royal Society of the United Kingdom, the Natural Science Foundation of Jiangsu Province of China under Grant BK2006093, and International Joint Project funded by NSFC and the Royal Society of the United Kingdom

    Existence of anticipatory, complete and lag synchronizations in time-delay systems

    Get PDF
    Existence of different kinds of synchronizations, namely anticipatory, complete and lag type synchronizations (both exact and approximate), are shown to be possible in time-delay coupled piecewise linear systems. We deduce stability condition for synchronization of such unidirectionally coupled systems following Krasovskii-Lyapunov theory. Transition from anticipatory to lag synchronization via complete synchronization as a function of coupling delay is discussed. The existence of exact synchronization is preceded by a region of approximate synchronization from desynchronized state as a function of a system parameter, whose value determines the stability condition for synchronization. The results are corroborated by the nature of similarity functions. A new type of oscillating synchronization that oscillates between anticipatory, complete and lag synchronization, is identified as a consequence of delay time modulation with suitable stability condition.Comment: 5 Figures 9 page

    Laser Chimeras as a paradigm for multi-stable patterns in complex systems

    Full text link
    Chimera is a rich and fascinating class of self-organized solutions developed in high dimensional networks having non-local and symmetry breaking coupling features. Its accurate understanding is expected to bring important insight in many phenomena observed in complex spatio-temporal dynamics, from living systems, brain operation principles, and even turbulence in hydrodynamics. In this article we report on a powerful and highly controllable experiment based on optoelectronic delayed feedback applied to a wavelength tunable semiconductor laser, with which a wide variety of Chimera patterns can be accurately investigated and interpreted. We uncover a cascade of higher order Chimeras as a pattern transition from N to N - 1 clusters of chaoticity. Finally, we follow visually, as the gain increases, how Chimera is gradually destroyed on the way to apparent turbulence-like system behaviour.Comment: 7 pages, 6 figure
    • 

    corecore