10,238 research outputs found

    Using motivation derived from computer gaming in the context of computer based instruction

    Get PDF
    This paper was originally presented at the IEEE Technically Sponsored SAI Computing Conference 2016, London, 13-15 July 2016. Abstract— this paper explores how to exploit game based motivation as a way to promote engagement in computer-based instruction, and in particular in online learning interaction. The paper explores the human psychology of gaming and how this can be applied to learning, the computer mechanics of media presentation, affordances and possibilities, and the emerging interaction of playing games and how this itself can provide a pedagogical scaffolding to learning. In doing so the paper focuses on four aspects of Game Based Motivation and how it may be used; (i) the game player’s perception; (ii) the game designers’ model of how to motivate; (iii) team aspects and social interaction as a motivating factor; (iv) psychological models of motivation. This includes the increasing social nature of computer interaction. The paper concludes with a manifesto for exploiting game based motivation in learning

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, Kühme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)

    Chatbots for learning: A review of educational chatbots for the Facebook Messenger

    Get PDF
    With the exponential growth in the mobile device market over the last decade, chatbots are becoming an increasingly popular option to interact with users, and their popularity and adoption are rapidly spreading. These mobile devices change the way we communicate and allow ever-present learning in various environments. This study examined educational chatbots for Facebook Messenger to support learning. The independent web directory was screened to assess chatbots for this study resulting in the identification of 89 unique chatbots. Each chatbot was classified by language, subject matter and developer's platform. Finally, we evaluated 47 educational chatbots using the Facebook Messenger platform based on the analytic hierarchy process against the quality attributes of teaching, humanity, affect, and accessibility. We found that educational chatbots on the Facebook Messenger platform vary from the basic level of sending personalized messages to recommending learning content. Results show that chatbots which are part of the instant messaging application are still in its early stages to become artificial intelligence teaching assistants. The findings provide tips for teachers to integrate chatbots into classroom practice and advice what types of chatbots they can try out.Web of Science151art. no. 10386

    Emerging technologies in physics education

    Get PDF
    Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies - Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools - are assessed particularly in terms of their potential at promoting conceptual change, developing expert-like problem-solving skills, and achieving the goals of the traditional physics laboratory. Pedagogical methods to maximize the potential of each educational technology are suggested.Comment: Accepted for publication in the Journal of Science Education and Technology; 20 page

    Personalised trails and learner profiling within e-learning environments

    Get PDF
    This deliverable focuses on personalisation and personalised trails. We begin by introducing and defining the concepts of personalisation and personalised trails. Personalisation requires that a user profile be stored, and so we assess currently available standard profile schemas and discuss the requirements for a profile to support personalised learning. We then review techniques for providing personalisation and some systems that implement these techniques, and discuss some of the issues around evaluating personalisation systems. We look especially at the use of learning and cognitive styles to support personalised learning, and also consider personalisation in the field of mobile learning, which has a slightly different take on the subject, and in commercially available systems, where personalisation support is found to currently be only at quite a low level. We conclude with a summary of the lessons to be learned from our review of personalisation and personalised trails

    A review on massive e-learning (MOOC) design, delivery and assessment

    Get PDF
    MOOCs or Massive Online Open Courses based on Open Educational Resources (OER) might be one of the most versatile ways to offer access to quality education, especially for those residing in far or disadvantaged areas. This article analyzes the state of the art on MOOCs, exploring open research questions and setting interesting topics and goals for further research. Finally, it proposes a framework that includes the use of software agents with the aim to improve and personalize management, delivery, efficiency and evaluation of massive online courses on an individual level basis.Peer ReviewedPostprint (author's final draft

    Comprendiendo el potencial y los desafíos del Big Data en las escuelas y la educación

    Full text link
    In recent years, the world has experienced a huge revolution centered around the gathering and application of big data in various fields. This has affected many aspects of our daily life, including government, manufacturing, commerce, health, communication, entertainment, and many more. So far, education has benefited only a little from the big data revolution. In this article, we review the potential of big data in the context of education systems. Such data may include log files drawn from online learning environments, messages on online discussion forums, answers to open-ended questions, grades on various tasks, demographic and administrative information, speech, handwritten notes, illustrations, gestures and movements, neurophysiologic signals, eye movements, and many more. Analyzing this data, it is possible to calculate a wide range of measurements of the learning process and to support various educational stakeholders with informed decision-making. We offer a framework for better understanding of how big data can be used in education. The framework comprises several elements that need to be addressed in this context: defining the data; formulating data-collecting and storage apparatuses; data analysis and the application of analysis products. We further review some key opportunities and some important challenges of using big data in educationEn los últimos años, el mundo ha experimentado una gran revolución centrada en la recopilación y aplicación de big data en varios campos. Esto ha afectado muchos aspectos de nuestra vida diaria, incluidos el gobierno, la manufactura, el comercio, la salud, la comunicación, el entretenimiento y muchos más. Hasta ahora, la educación se ha beneficiado muy poco de la revolución del big data. En este artículo revisamos el potencial de los macrodatos en el contexto de los sistemas educativos. Dichos datos pueden incluir archivos de registro extraídos de entornos de aprendizaje en línea, mensajes en foros de discusión en línea, respuestas a preguntas abiertas, calificaciones en diversas tareas, información demográfica y administrativa, discurso, notas escritas a mano, ilustraciones, gestos y movimientos, señales neurofisiológicas, movimientos oculares y muchos más. Analizando estos datos es posible calcular una amplia gama de mediciones del proceso de aprendizaje y apoyar a diversos interesados educativos con una toma de decisiones informada. Ofrecemos un marco para una mejor comprensión de cómo se puede utilizar el big data en la educación. El marco comprende varios elementos que deben abordarse en este contexto: definición de los datos; formulación de aparatos de recolección y almacenamiento de datos; análisis de datos y aplicación de productos de análisis. Además, revisamos algunas oportunidades clave y algunos desafíos importantes del uso de big data en la educació
    corecore