5,298 research outputs found

    IoT Ignorance is Digital Forensics Research Bliss: A Survey to Understand IoT Forensics Definitions, Challenges and Future Research Directions

    Get PDF
    Interactions with IoT devices generates vast amounts of personal data that can be used as a source of evidence in digital investigations. Currently, there are many challenges in IoT forensics such as the difficulty in acquiring and analysing IoT data/devices and the lack IoT forensic tools. Besides technical challenges, there are many concepts in IoT forensics that have yet to be explored such as definitions, experience and capability in the analysis of IoT data/devices and current/future challenges. A deeper understanding of these various concepts will help progress the field. To achieve this goal, we conducted a survey which received 70 responses and provided the following results: (1) IoT forensics is a sub-domain of digital forensics, but it is undecided what domains are included; (2) practitioners are already having to examine IoT devices even though they felt undertrained; (3) requirements for technical training, software and education are non-existent; (4) high priority on research should be to develop IoT forensic tools, how to preserve volatile data and methods to identify and acquire data from the cloud; (5) improvements to forensic tools should be aimed at data acquisition (imaging) and device disassembly / forensic process; (6) practitioners’ perspectives on research direction differ slightly to non-practitioners in that the focus should be on breaking encryption on IoT devices rather than focus on cloud data forensics; (7) future research should focus on developing initiatives and strategies to overcome data encryption and trail obfuscation in the cloud and ongoing development of IoT forensic tools. The responses to the survey question on the definition of IoT forensics helped us formulate a working definition. This has provided a clearer understanding of the subject, which will help further advance the research area

    Rethinking Digital Forensics

    Get PDF
    © IAER 2019In the modern socially-driven, knowledge-based virtual computing environment in which organisations are operating, the current digital forensics tools and practices can no longer meet the need for scientific rigour. There has been an exponential increase in the complexity of the networks with the rise of the Internet of Things, cloud technologies and fog computing altering business operations and models. Adding to the problem are the increased capacity of storage devices and the increased diversity of devices that are attached to networks, operating autonomously. We argue that the laws and standards that have been written, the processes, procedures and tools that are in common use are increasingly not capable of ensuring the requirement for scientific integrity. This paper looks at a number of issues with current practice and discusses measures that can be taken to improve the potential of achieving scientific rigour for digital forensics in the current and developing landscapePeer reviewe

    Digital forensics challenges to big data in the cloud

    Get PDF
    As a new research area, Digital Forensics is a subject in a rapid development society. Cyber security for Big Data in the Cloud is getting attention more than ever. Computing breach requires digital forensics to seize the digital evidence to locate who done it and what has been done maliciously and possible risk/damage assessing what loss could leads to. In particular, for Big Data attack cases, Digital Forensics has been facing even more challenge than original digital breach investigations. Nowadays, Big Data due to its characteristics of three “V”s (Volume, Velocity, and Variety), they are either synchronized with Cloud (Such as smart phone) or stored on the Cloud, in order to sort out the storage capacity etc. problems, which made Digital Forensics investigation even more difficult. The Big Data-Digital Forensics issue for Cloud is difficult due to some issues. One of them is physically identify specific wanted device. Data are distributed in the cloud, customer or the digital forensics practitioner cannot have a fully access control like the traditional investigation does. The Smart City technique is making use of ICT (information communications technology) to collecting, detecting, analysing and integrating the key information data of core systems in running the cities. Meantime, the control is making intelligent responses to different requirements that include daily livelihood, PII (Personally identifiable information) security, environmental protection, public safety, industrial and commercial activities and city services. The Smart City data are Big Data, collected and gathered by the IoT (Internet of Things). This paper has summerised our review on the trends of Digital Forensics served for Big Data. The evidence acquisition challenge is discussed. A case study of a Smart City project with the IoT collected services Big data which are stored at the cloud computing environment is represented. The techniques can be generalised to other Big Data in the Cloud environment
    corecore