4 research outputs found

    Requests Prediction in Cloud with a Cyclic Window Learning Algorithm

    Get PDF
    Automatic resource scaling is one advantage of cloud systems. Cloud systems are able to scale the number of physical machines depending on user requests. Therefore, accurate request prediction brings a great improvement in cloud systems\u27 performance. If we can make accurate requests prediction, the appropriate number of physical machines that can accommodate predicted amount of requests can be activated and cloud systems will save more energy by preventing excessive activation of physical machines. Also, cloud systems can implement advanced load distribution with accurate requests prediction. We propose a prediction model that predicts probability distribution parameters of requests for each time interval. Maximum Likelihood Estimation (MLE) and Local Linear Regression (LLR) are used to implement this algorithm. An evaluation of the proposed algorithm is performed with the Google cluster-trace data. The prediction is achieved in terms of the number of task arrivals, CPU requests, and memory resource requests. Then the accuracy of prediction is measured with Mean Absolute Percentage Error(MAPE) and Normalized Mean Squared Error (NMSE)

    Adaptive Fog Configuration for the Industrial Internet of Things

    Full text link
    Industrial Fog computing deploys various industrial services, such as automatic monitoring/control and imminent failure detection, at the Fog Nodes (FNs) to improve the performance of industrial systems. Much effort has been made in the literature on the design of fog network architecture and computation offloading. This paper studies an equally important but much less investigated problem of service hosting where FNs are adaptively configured to host services for Sensor Nodes (SNs), thereby enabling corresponding tasks to be executed by the FNs. The problem of service hosting emerges because of the limited computational and storage resources at FNs, which limit the number of different types of services that can be hosted by an FN at the same time. Considering the variability of service demand in both temporal and spatial dimensions, when, where, and which services to host have to be judiciously decided to maximize the utility of the Fog computing network. Our proposed Fog configuration strategies are tailored to battery-powered FNs. The limited battery capacity of FNs creates a long-term energy budget constraint that significantly complicates the Fog configuration problem as it introduces temporal coupling of decision making across the timeline. To address all these challenges, we propose an online distributed algorithm, called Adaptive Fog Configuration (AFC), based on Lyapunov optimization and parallel Gibbs sampling. AFC jointly optimizes service hosting and task admission decisions, requiring only currently available system information while guaranteeing close-to-optimal performance compared to an oracle algorithm with full future information

    Requests Prediction in Cloud with a Cyclic Window Learning Algorithm

    No full text
    Automatic resource scaling is one advantage of cloud systems. Cloud systems are able to scale the number of physical machines depending on user requests. Therefore, accurate request prediction brings a great improvement in cloud systems' performance. If we can make accurate requests prediction, the appropriate number of physical machines that can accommodate predicted amount of requests can be activated and cloud systems will save more energy by preventing excessive activation of physical machines. Also, cloud systems can implement advanced load distribution with accurate requests prediction. We propose a prediction model that predicts probability distribution parameters of requests for each time interval. Maximum Likelihood Estimation (MLE) and Local Linear Regression (LLR) are used to implement this algorithm. An evaluation of the proposed algorithm is performed with the Google cluster-trace data. The prediction is achieved in terms of the number of task arrivals, CPU requests, and memory resource requests. Then the accuracy of prediction is measured with Mean Absolute Percentage Error(MAPE) and Normalized Mean Squared Error (NMSE).This is a manuscript of a proceeding published as Yoon, Min Sang, Ahmed E. Kamal, and Zhengyuan Zhu. "Requests prediction in cloud with a cyclic window learning algorithm." In 2016 IEEE Globecom Workshops (GC Wkshps), (2016). DOI: 10.1109/GLOCOMW.2016.7849022. Posted with permission.</p
    corecore