18 research outputs found

    Development of the NTP Pool Project in Taiwan

    Get PDF
    Among the standard time reporting systems, the Network Time Protocol (NTP) provides an easy and accurate way for the accessing the Universal time. The NTP is taking the benefit of the pervasiveness of the computer network during the recent information-oriented modern world. The NTP Pool Project is the project to provide a distributed framework of the NTP servers. As the ever-increasing amounts of the requests of the standard time, the number of the NTP servers provided by the NTP Pool Project will be extended correspondingly. This paper will provide the detailed introduction on the framework of the NTP Pool Project, the development of the NTP Pool Project in Taiwan at the present time, and the followed by the suggestions of the implementation of the NTP pool project

    A Distributed Control Law for Load Balancing in Content Delivery Networks

    Get PDF
    Large Internet-scale distributed systems deploy hundreds of thousands of servers in thousands of data centers around the world. Internet-scale distributed system to have emerged in the past decade is the content delivery network (CDN, for short) that delivers web content, web and IP-based applications, downloads, and streaming media to end-users (i.e., clients) around the world. This paper focuses on the main research areas in the field of CDN, pointing out the motivations, and analyzing the existing strategies for replica placement and management, server measurement, best fit replica selection and request redirection. In this paper, I face the challenging issue of defining and implementing an effective law for load balancing in Content Delivery Networks. A formal study of a CDN system, carried out through the exploitation of a fluid flow model characterization of the network of servers. This result is then leveraged in order to devise a novel distributed and time-continuous algorithm for load balancing

    SCOPE: Synergistic Content Distribution and Peer-to-Peer Networks

    Get PDF
    Distributing content on the Internet is an important economic, educational, social, and cultural endeavor. To this end, several existing efforts use traditional server-based content distribution networks (CDNs) to replicate and distribute Web and multimedia content of big content producers, such as news Web sites, or big businesses, such as online shopping websites, etc., to millions of Internet users. This approach places a large number of content servers at strategic locations on the Internet, incurring a very large deployment and operating cost. Therefore, it is available only to some wealthy companies/organizations. Individual users and small content publishers may rely on a more economical content dissemination approach based on recent peer-to-peer technology to distribute their own content. Nevertheless, it is the ephemeral and the limited resources nature of peer-to-peer networks that hinder a wide spread adoption of peer-to-peer technology as a reliable content distribution solution. It is, therefore, important that a new generation of cost-effective and reliable content distribution framework be proposed and investigated. Building on the successes and failures of previous content distribution approaches, the proposed research goal is to find and evaluate a Synergistic Content Distribution and Peer-to-Peer Networks (SCOPE). SCOPE leverages the reliability and the resourcefulness of traditional server-based CDNs while tapping on the economical and dynamic resources of peers

    Web Replica Hosting Systems

    Get PDF

    Building high-performance web-caching servers

    Get PDF

    階層型ピア・ツー・ピアファイル検索のための負荷管理の研究

    Get PDF
    In a Peer-to-Peer (P2P) system, multiple interconnected peers or nodes contribute a portion of their resources (e.g., files, disk storage, network bandwidth) in order to inexpensively handle tasks that would normally require powerful servers. Since the emergency of P2P file sharing, load balancing has been considered as a primary concern, as well as other issues such as autonomy, fault tolerance and security. In a process of file search, a heavily loaded peer may incur a long latency or failure in query forwarding or responding. If there are many such peers in a system, it may cause link congestion or path congestion, and consequently affect the performance of overall system. To avoid such situation, some of general techniques used in Web systems such as caching and paging are adopted into P2P systems. However, it is highly insufficient for load balancing since peers often exhibit high heterogeneity and dynamicity in P2P systems. To overcome such a difficulty, the use of super-peers is currently being the most promising approach in optimizing allocation of system load to peers, i.e., it allocates more system load to high capacity and stable super-peers by assigning task of index maintenance and retrieval to them. In this thesis, we focused on two kinds of super-peer based hierarchical architectures of P2P systems, which are distinguished by the organization of super-peers. In each of them, we discussed system load allocation, and proposed novel load balancing algorithms for alleviating load imbalance of super-peers, aiming to decrease average and variation of query response time during index retrieval process. More concretely, in this thesis, our contribution to load management solutions for hierarchical P2P file search are the following: • In Qin’s hierarchical architecture, indices of files held by the user peers in the bottom layer are stored at the super-peers in the middle layer, and the correlation of those two bottom layers is controlled by the central server(s) in the top layer using the notion of tags. In Qin’s system, a heavily loaded super-peer can move excessive load to a lightly loaded super-peer by using the notion of task migration. However, such a task migration approach is not sufficient to balance the load of super-peers if the size of tasks is highly imbalanced. To overcome such an issue, in this thesis, we propose two task migration schemes for this architecture, aiming to ensure an even load distribution over the super-peers. The first scheme controls the load of each task in order to decrease the total cost of task migration. The second scheme directly balances the load over tasks by reordering the priority of tags used in the query forwarding step. The effectiveness of the proposed schemes are evaluated by simulation. The result of simulations indicates that all the schemes can work in coordinate, in alleviating the bottleneck situation of super-peers. • In DHT-based super-peer architecture, indices of files held by the user peers in the lower layer are stored at the DHT connected super-peers in the upper layer. In DHT-based super-peer systems, the skewness of user’s preference regarding keywords contained in multi-keyword query causes query load imbalance of super-peers that combines both routing and response load. Although index replication has a great potential for alleviating this problem, existing schemes did not explicitly address it or incurred high cost. To overcome such an issue, in this thesis, we propose an integrated solution that consists of three replication schemes to alleviate query load imbalance while minimizing the cost. The first scheme is an active index replication in order to decrease routing load in the super-peer layer, and distribute response load of an index among super-peers that stored the replica. The second scheme is a proactive pointer replication that places location information of an index, for reducing maintenance cost between the index and its replicas. The third scheme is a passive index replication that guarantees the maximum query load of super-peers. The result of simulations indicates that the proposed schemes can help alleviating the query load imbalance of super-peers. Moreover, by comparison it was found that our schemes are more cost-effective on placing replicas than other approaches.広島大学(Hiroshima University)博士(工学)Doctor of Engineering in Information Engineeringdoctora
    corecore