11 research outputs found

    In vivo manganese-enhanced MRI for visuotopic brain mapping

    Get PDF
    This study explored the feasibility of localized manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administrations for visuotopic brain mapping of retinal, callosal, cortico-subcortical, transsynaptic and horizontal connections in normal adult rats. Upon fractionated intravitreal Mn(2+) injection, Mn enhancements were observed in the contralateral superior colliculus (SC) and lateral geniculate nucleus (LGN) by 45-60% at 1-3 days after initial Mn(2+) injection and in the contralateral primary visual cortex (V1) by about 10% at 2-3 days after initial Mn(2+) injection. Direct, single-dose Mn(2+) injection to the LGN resulted in Mn enhancement by 13-21% in V1 and 8-11% in SC of the ipsilateral hemisphere at 8 to 24 hours after Mn(2+) administration. Intracortical, single-dose Mn(2+) injection to the visual cortex resulted in Mn enhancement by 53-65% in ipsilateral LGN, 15-26% in ipsilateral SC, 32-34% in the splenium of corpus callosum and 17-25% in contralateral V1/V2 transition zone at 8 to 24 hours after Mn(2+) administration. Notably, some patchy patterns were apparent near the V1/V2 border of the contralateral hemisphere. Laminar-specific horizontal cortical connections were also observed in the ipsilateral hemisphere. The current results demonstrated the sensitivity of MEMRI for assessing the neuroarchitecture of the visual brains in vivo without depth-limitation, and may possess great potentials for studying the basic neural components and connections in the visual system longitudinally during development, plasticity, pharmacological interventions and genetic modifications.published_or_final_versio

    Reward circuitry is perturbed in the absence of the serotonin transporter

    Get PDF
    The serotonin transporter (SERT) modulates the entire serotonergic system in the brain and influences both the dopaminergic and norepinephrinergic systems. These three systems are intimately involved in normal physiological functioning of the brain and implicated in numerous pathological conditions. Here we use high-resolution magnetic resonance imaging (MRI) and spectroscopy to elucidate the effects of disruption of the serotonin transporter in an animal model system: the SERT knock-out mouse. Employing manganese-enhanced MRI, we injected Mn^(2+) into the prefrontal cortex and obtained 3D MR images at specific time points in cohorts of SERT and normal mice. Statistical analysis of co-registered datasets demonstrated that active circuitry originating in the prefrontal cortex in the SERT knock-out is dramatically altered, with a bias towards more posterior areas (substantia nigra, ventral tegmental area, and Raphé nuclei) directly involved in the reward circuit. Injection site and tracing were confirmed with traditional track tracers by optical microscopy. In contrast, metabolite levels were essentially normal in the SERT knock-out by in vivo magnetic resonance spectroscopy and little or no anatomical differences between SERT knock-out and normal mice were detected by MRI. These findings point to modulation of the limbic cortical–ventral striatopallidal by disruption of SERT function. Thus, molecular disruptions of SERT that produce behavioral changes also alter the functional anatomy of the reward circuitry in which all the monoamine systems are involved

    Blast-Induced Tinnitus: A Combined Behavioral, Memri, And Electrophysiology Study

    Get PDF
    ABSTRACT BLAST-INDUCED TINNITUS: A COMBINED BEHAVIORAL, MEMRE, AND ELECTROPHYSIOLOGY STUDY by JESSICA OUYANG May 2014 Advisor: Drs. Steve Cala & Jinsheng Zhang Major: Physiology Degree: Doctor of Philosophy Tinnitus and hearing loss are the frequent auditory-related co-morbidities of blast trauma. The etiology of blast-induced tinnitus is also muddled by brain mechanisms associated with emotional and cognitive problems such as anxiety, memory loss, and depression. We set out to develop a realistic and ecologically valid model to address changes of cognitive status and psychological state that are associated with blast- induced tinnitus. In this study, 19 adult rats were randomly divided into the sham group (n=6) and the blast group (n=13). Blast exposure (14 psi) was conducted via a shock wave tube to expose the left ears of the rats in the blast group, and a sham exposure was conducted to the rats in the sham group. Blast-induced tinnitus was evaluated with gap detection and pre-pulse inhibition (PPI) acoustic startle reflex paradigms; the changes of thresholds of the hearing was evaluated with auditory brainstem response (ABRs), the change in the level of anxiety was evaluated with elevated plus maze; and the change in the status of memory was evaluated with one-day Morris water maze. To investigate blast-induced neuronal changes in the limbic structures, we utilized MEMRI technique. Obtained with MRIcro, MR intensity signal-to-noise ratios (SNRs) of 83 selected limbic structures were measured to represent the level of synaptic activity. Of the 13 rats that were exposed to blast shock wave, 8 rats developed chronic tinnitus on post-exposure day 35 (PED35) and 5 rats did not. Our results showed that compared to rats in the sham group (n=6), (1) rats in the blast group with or without tinnitus demonstrated higher level of anxiety (p\u3c0.05); (2) rats in the blast group that exhibited behavioral evidences of tinnitus (n=8) demonstrated neuronal hyperactivity in bilateral amygdaloidal complex, specifically bilateral basolateral groups and the left cortical-like group of the amygdala (p\u3c0.05); and (3) rats in the blast group demonstrated neuronal hyperactivity in bilateral nucleus accumbens core (p\u3c0.05). In conclusion, the elevated level of synaptic activity in the bilateral amygdala and nucleus accumbens core indicates central plasticity associated with blast-induced tinnitus

    Volumetric Manganese Enhanced Magnetic Resonance Imaging in mice (mus musculus)

    Get PDF
    The present doctoral thesis introduces a method for semi-automatic volumetric analysis of the hippocampus and other distinct brain regions in laboratory mice. The method of volumetric manganese enhanced magnetic resonance imaging (vMEMRI) makes use of the paramagnetic property of the manganese ion, Mn2+, which results in a positive contrast enhancement of specific brain areas on the MR image and enables a more detailed image of brain morphology. The chemical similarity of Mn2+ to Calcium leads to an accumulation of Mn2+ in excited cells and consequentially an enhanced signal in certain brain regions in an activity dependent manner. However, one major drawback for vMEMRI is the toxicity of Mn2+. Therefore, the aims of the thesis have been: (1) Establishment of a MEMRI protocol in mice (2) Optimization of a Mn2+ application procedure to reduce toxic side effects (3) Development of an automatized method to determine hippocampal volume (4) Validation of vMEMRI analysis (5) Application of volumetric analysis in mouse models of psychopathology This thesis splits into 3 studies. Study 1 deals with Mn2+ toxicity and introduces an application method that considerably reduces the toxic side effects of Mn2+. Study 2 validates vMEMRI as a method to reliably determine hippocampal volume and explores its utilization it in animals with genetically and chemically modified hippocampi. Study 3 displays the application vMEMRI in a mouse model of a psychiatric disorder. Study 1 shows that a single application of Mn2+ in dosages used in current MEMRI studies leads to considerable toxic side effects measurable with physiological, behavioral and endocrine markers. In contrast, a fractionated application of a low dose of Mn2+ is proposed as an alternative to a single injection of a high dose. Repeated application of low dosages of 30 mg/kg Mn2+ showed less toxic side effects compared to the application schemes with higher dosages of 60 mg/kg. Additionally, the best vMEMRI signal contrast was seen for an injection protocol of 30 mg/kg 8 times with an inter-injection interval of 24 h (8x30/24 protocol). The impact of the 8x30/24 application protocol on longitudinal studies was tested by determining whether learning processes are disturbed. Mice were injected with the 8x30/24 protocol 2 weeks prior to receiving a single footshock. Manganese injected mice showed less contextual freezing to the shock context and a shock context reminder one month after shock application. Furthermore, mice showed increased hyperarousal and no avoidance of shock context related odors. This impairment in fear conditioning indicates a disturbed associative learning of Mn2+ injected mice. Therefore, it was investigated whether Mn2+ application shows a specific disturbance of hippocampus dependent learning. Mice were subjected to habitual and spatial learning protocols 12 h after each injection in a water cross-maze. There was no impairment in learning protocols which allowed for hippocampus-independent habitual learning. However, Mn2+ injected mice were specifically impaired in the hippocampus-dependent spatial learning protocol. Furthermore, it was shown that only mice with higher Mn2+ accumulation showed this impairment. Altogether, the results of this chapter argue for a fractionated application scheme such as 30 mg/kg every 24 h for 8 days to provide sufficient MEMRI signal contrast while minimizing toxic side effects. However, the treatment procedure has to be further improved to allow for an analysis of hippocampus-dependent learning processes as well. Because of the potential side effects, the vMEMRI method was applied as a final experiment in study 2 and 3. Study 2 introduces the method of vMEMRI, which allows, for the first time, an in vivo semi-automatic detection of hippocampal volume. Hippocampal volume of mice with genetically altered adult neurogenesis and those with chemically lesioned hippocampi could be analyzed with vMEMRI. Even the highly variable differences in hippocampal volume of these animals could be detected with vMEMRI. vMEMRI data correlated with manually obtained volumes and are in agreement with previously reported histological findings, indicating the high reliability of this method. Study 3 investigates the ability of vMEMRI to detect even small differences in brain morphology by examining volumetric changes of the hippocampus and other brain structures in a mouse model of PTSD supplemented with enriched housing conditions. It was shown, that exposure to a brief inescapable foot shock led to a volume reduction in both the left hippocampus and right central amygdala two months later. Enriched housing decreased the intensity of trauma-associated contextual fear independently of whether it was provided before or after the shock. vMEMRI analysis revealed that enriched housing led to an increase in whole brain volume, including the lateral ventricles and the hippocampus. Furthermore, the enhancement of hippocampal volume through enriched housing was accompanied by the amelioration of trauma-associated PTSD-like symptoms. Hippocampal volume gain and loss was mirrored by ex vivo ultramicroscopic measurements of the hippocampus. Together, these data demonstrate that vMEMRI is able to detect small changes in hippocampal and central amygdalar volumes induced by a traumatic experience in mice. In conclusion, vMEMRI proves to be very reliable and able to detect small volumetric differences in various brain regions in living mice. vMEMRI opens up a great number possibilities for future research determining neuroanatomical structure, volumes and activity in vivo as well as the ability to repeatedly determine such characteristics within each subject, given an improvement of the Mn2+ treatment protocols to minimize potential toxic side effects

    MRI Studies of Appetite Centre Function in Rodents

    No full text
    Many different regions of the brain are involved in appetite control. A full understanding of their function and interaction requires studying neuronal activity at high resolution simultaneously in space and time. Two Magnetic Resonance Imaging (MRI) methods can potentially achieve this goal. Manganese-Enhanced (MEMRI) uses the accumulation of administered Mn[2+], which is paramagnetic (hence MRI visible) and taken up by active neurons through voltage-gated Ca[2+] channels during action potentials. Haemodynamic methods use one or more of many MRI-visible changes that occur to circulating blood in a brain region when it changes activity. These include blood-oxygenation level dependent (BOLD) and cerebral blood volume weighted (CBV) MRI. The aim of this project was to further develop, adapt and then use these methods to study the effects on neuronal activity of stimuli related to appetite and energy balance. The majority of work went towards adapting MEMRI for this. Amongst many tested changes, improvements were made to the MRI acquisition protocol (specifically using fast spin echo rather than spin-echo acquisition) to make it more sensitive to Mn-induced signal changes, increase spatial coverage from partial to whole brain and rostro-caudal spatial resolution from 1 to 0.4mm, all while maintaining the same temporal resolution. Most importantly, the neuroimaging analysis framework used in haemodynamic functional MRI was adapted for use with MEMRI. This included the adaptation of spatial normalization software to handle Mn-sensitive T[1]-weighted images dominated by non-brain tissue rather than brain dominated T[2]/T*[2]-weighted images, and the generation of a signal change model for use in GLM. This enabled much more objective, reproducible and less laborious data analysis than with previous hand drawn ROIs. Attempts were made to use BOLD- and CBV-fMRI to study the effects of potent, appetite-modulating gut hormones on appetite, though these failed to produce a response

    Cartographie in vivo des remaniements anatomo-fonctionnels de l'architecture des réseaux neuronaux dans le système nerveux central au cours du développement par Imagerie du Tenseur de Diffusion et Imagerie renforcée par le manganèse

    Get PDF
    L objectif de cette thèse est de développer des méthodes IRM permettant d étudier l impact d une ischémie focale transitoire sur le cerveau de rat nouveau-né. Les techniques utilisées sont l imagerie à contraste renforcé par le manganèse (MEMRI), l imagerie du tenseur de diffusion (DTI) ainsi que de façon préliminaire l imagerie Q-ball (QBI). Le MEMRI après injection intra cérébrale a été utilisé afin d étudier de manière dynamique le tractus cortico-thalamique, en parallèle le DTI a servi de marqueur de la structuration cérébrale. Les résultats ont montré une atteinte du tractus cortico-thalamique ipsi-latéral, sept et quatorze jours après ischémie. De manière générale le DTI a montré une structuration ralentie à la suite de l ischémie. A partir de ces résultats la faisabilité d une méthode d acquisition rapide et de traitement de données Q-ball a été établie puis testée sur un animal immature. Les méthodes mises en place se sont révélées efficaces dans le suivi de la maturation cérébrale dans des conditions normales ainsi que pathologiques, ouvrant des perspectives d études liées au développement cérébral.The thesis aim is to develop MRI methods to study the impact of focal transient ischemia in neonatal rat brain. The principal techniques used are MEMRI (Manganese Enhanced MRI), DTI (Diffusion Tensor Imaging) and QBI (Q-Ball Imaging). MEMRI was used to observe in a dynamic way the cortico-thalamic manganese transport combined with the structural informations extracted from the DTI experiments. Results have shown a cortico-thalamic pathway disturbance, at seven and fourteen days after ischemia. Globally DTI results have shown a slowed brain structuration. From these results, the feasibility of a fast acquisition method and the post processing steps of Q-ball protocol was established and applied in an immature rat. The different MRI protocols developed during this thesis have shown good efficiency to follow the rat brain maturation, in healthy and pathological conditions, thus opening new perspectives for brain development studies.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    IRM du manganèse (MEMRI) (couplage à l'imagerie chimique par microsonde synchrotron pour optimiser l'imagerie fonctionnelle du transport neuronal)

    Get PDF
    Résumé Le manganèse (Mn2+) est un élément essentiel du corps humain. Ses propriétés paramagnétiques permettent son utilisation comme agent de contraste pour l'IRM (Mn-MRI ou MEMRI). Analogue du calcium (Ca2+), il pénètre les neurones essentiellement par les canaux calciques. Il est ensuite transporté le long des microtubules jusqu'aux synapses où il est libéré, puis capturé par les autres neurones. Ainsi, il peut rendre compte du transport axonal antérograde et rétrograde. L'approche MEMRI peut ainsi apporter des informations uniques sur la connectivité fonctionnelle cérébrale. Toutefois, deux problèmes limitent l'emploi de ce puissant outil d'imagerie in vivo : (i) A doses élevées, le Mn2+ est toxique pour l'organisme et peut provoquer une atteinte grave du système nerveux central, appelé manganisme. Les niveaux et les mécanismes de toxicité sont mal connus. (ii) Le mode de transport du manganèse dans l'approche MEMRI est mal connu. Afin d'apporter des éléments de réponse à ces deux problèmes, nous avons entrepris une étude couplant IRM et microscopie synchrotron pour mieux comprendre le comportement du Mn2+ in vivo. Nous avons précisé les distributions cellulaire et sub-cellulaire du Mn et d'autres métaux pour un modèle de cellules de type neuronal (lignée de neuroblastome N2A), pour des cultures primaires de neurones hippocampiques, mais aussi au niveau de coupes d'hippocampe de rats. En parallèle, nous avons étudié les effets du Mn sur le métabolisme cérébral par une technique de RMN-HRMAS du proton. Pour compléter ce travail, nous avons mis en œuvre l'imagerie MEMRI chez les souris KO MAP6 présentant un déficit d'une protéine stabilisatrice des microtubules pour évaluer la connectivité fonctionnelle du tract thalamo-cortical. Mots clés Hippocampe, MAP6, manganèse, métabolisme, métal, neurone, MRI, rongeurs, synchrotron.Abstract Manganese (Mn2+) is an essential element for human body. The paramagnetic properties of Mn2+ permit it use as a contrast agent for MRI (Mn-MRI or MEMRI). Analogue of calcium (Ca2+), it enters neurons primarily by calcium channels. It is then transported along microtubules to the synapse where it is released and then captured by other neurons. Thus, it can account for the anterograde and retrograde axonal transport. The MEMRI approach can provide unique information about cerebral functional connectivity. Two problems limit the use of this powerful tool for in vivo imaging: (i) At high doses, Mn2+ is toxic to the body and can cause serious problem of the central nervous system, called manganism. The level and the mechanisms of toxicity are poorly understood. (ii) The mode of manganese transport in the MEMRI approach is unclear. To address these two issues, we undertook a study coupling MRI and synchrotron microscopy to study the Mn 2+ behavior in vivo. We characterized the cellular and subcellular distributions of Mn and other metals in "pseudo neurons" cell line N2A, primary cultures of hippocampal neurons, andin hippocampal slices from rats. In parallel, we studied the effects of Mn on brain metabolism by proton-HRMAS NMR . In parallel, weevaluated MEMRI in MAP6 KO mice which exhibit a deficit in microtubule stabilizing protein, to assess the functional connectivity of the thalamocortical tract. Key words hippocampus, MAP6, manganese, metabolism, metal, neuron, MRI, rodent, synchrotron.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    IRM fonctionnelle chez le rat (défis méthodologiques)

    Get PDF
    L'imagerie par résonance magnétique fonctionnelle (IRMf ) permet de détecter sur le cerveau entier des activations neuronales en réponse à un stimulus, par le biais de l'observation des modifications hémodynamiques occasionnées. En particulier, l'IRMf est un outil de choix pour l'étude des mécanismes de la stimulation cérébrale profonde et de la stimulation du nerf vague qui sont encore mal connus. Cependant, cette technique n'est pas facilement utilisable chez l'homme en raison des problèmes de sécurité vis-à-vis de l'action des champs magnétiques intenses utilisés en IRM au niveau des électrodes implantées. Les développements méthodologiques chez l'animal sont donc nécessaires. L'objectif principal de cette thèse est l'étude des mécanismes à distance de la stimulation du système nerveux central et périphérique par IRMf chez le rat. Nous présentons dans un premier temps les séquences IRM rapides utilisées en IRMf, comme l'Echo-Planar Imaging multishot, permettant d'imager le cerveau entier en 1 à 2 secondes seulement, ainsi que les différents problèmes posés par l'utilisation de ces séquences, comme les artefacts de susceptibilité magnétique. Le couplage des séquences développées durant cette thèse avec des mesures électrophysiologiques a notamment permis l'imagerie des réseaux épileptiques chez le rat. Dans un second temps, nous développons les problèmes posés par la préparation animale, particulière en IRMf de par le fait que le couplage neurovasculaire doit être préservé sous anesthésie afin de préserver les activations neuronales. Après comparaison avec les anesthésies à l'isoflurane et la kétamine, nous avons déduit que la médétomidine constituait un anesthésique de choix pour l'IRMf du rongeur, et précisons le protocole de préparation animale utilisé pour l'imagerie. De plus, les électrodes utilisées en stimulation intracérébrale induisent des artefacts importants en imagerie, et des électrodes constituées de matériaux amagnétiques sont nécessaires. Nous expliquons pourquoi nous avons choisi des électrodes en carbone, et présentons le protocole de fabrication utilisé. Nous avons ensuite validé ces développements méthodologiques par des expériences d'IRMf de challenges hypercapniques et de stimulation de la patte chez le rat. Puis nous avons conduit une étude IRMf approfondie des mécanismes d'action de la stimulation du nerf vague, en s'intéressant à la distinction entre activations neuronales et effets cardiovasculaires confondants par modélisation causale dynamique. Nous présentons aussi des résultats en IRMf de la stimulation électrique intracérébrale chez le rat. Plusieurs cibles ont été stimulées (noyau géniculé dorso-latéral, gyrus dentelé, striatum et thalamus), et des activations ont été obtenues à distance de l'électrode, conformément aux connaissances actuelles sur les connexions neuroanatomiques de ces noyaux. Ainsi, nous avons mis au point et validé l'IRMf du rat et son application à la stimulation électrique du système nerveux périphérique et central.Functional magnetic resonance imaging (fMRI) can detect neuronal activations in the entire brain, in response to a stimulus, through the observation of subsequent hemodynamic changes. In particular, fMRI is a good tool for studying the mechanisms of deep brain stimulation and vagus nerve stimulation, which are still poorly understood. However, this technique is not readily usable in humans because of safety concerns towards the action of the strong magnetic fields used in MRI on implanted electrodes. Indeed, methodological developments in animals are needed. The main goal of this thesis is to study the mechanisms of central and peripheral nervous system stimulation in rats by fMRI. First, fast MRI sequences used in fMRI are exposed, such as multishot Echo-Planar Imaging, allowing to image the entire brain in a couple of seconds. Various imaging problems posed by these sequences, such as magnetic susceptibility artifacts, are also presented. These sequences, developed during this thesis, associated with electrophysiological measurements, allowed imaging of epileptic networks in the rat. Secondly, animal preparation is developped, as it is peculiar in fMRI : neuronal activations, as well as neurovascular coupling, must be preserved under anesthesia. Compared to anesthesia by isoflurane and ketamine, it was concluded that medetomidine was an anesthetic of choice for fMRI of the rodent, and the protocol used for animal preparation for imaging is specified. Furthermore, the electrodes used in deep brain stimulation induce significant artifacts in MRI images, and electrodes made of amagnetic materials are needed. Our choice of carbon electrodes is explained, and the manufacturing protocol used is exposed. These methodological developments were then validated in fMRI experiments of hypercapnic challenges and forepaw stimulation. Finally, an fMRI experiment studying mechanisms of action of vagus nerve stimulation was conducted, focusing on the distinction between neuronal activations and confounding cardiovascular effects by dynamic causal modeling. Also, results on fMRI of deep brain stimulation in rats are presented. Several targets were stimulated (dorsolateral geniculate nucleus, dentate gyrus, striatum and thalamus), and activations were obtained at a distance from the electrode. Results were in accordance with current knowledge on neuroanatomical connections of these nuclei. Thus, we developed and validated fMRI of the rat and its application to electrical stimulation of peripheral and central nervous system.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Der BOLD-Effekt in der funktionellen Magnetresonanztomographie bei hoher magnetischer Feldstärke und hoher räumlicher Auflösung an Ratten

    Get PDF
    In dieser Arbeit wird der BOLD-Effekt an Ratten bei hoher magnetischer Feldstärke und hoher räumlicher Auflösung untersucht. Es wird allgemein angenommen, dass der BOLD-Kontrast in einem funktionellen MRT-Experiment mit höherer Feldstärke ansteigt. In dieser Arbeit wird ein Vergleich des BOLD-Kontrastes mit SE- und GE-EPI bei den Feldstärken 7.0 Tesla und 11.7 Tesla vorgestellt. Darin wird gezeigt, dass bei einer Erhöhung von 7.0 Tesla auf 11.7 Tesla, trotz des gesteigerten Signal-Rausch-Verhältnisses, die erwartete Steigerung der Amplitude des BOLD-Kontrastes ausbleibt. Die aktuelle Theorie des BOLD-Effektes erklärt extravaskuläre und intravaskuläre sowie statische und dynamische BOLD-Effekte. Die Theorie wird in Hinblick auf die Ergebnisse besonders auf den Einfluss der Echozeiten TE und der 2D-Auflösung von (400 μm)^2 diskutiert. Bei einer Studie mit EPI-Aufnahmen bei 11.7 Tesla mit hoher räumlicher 2D-Auflösung von bis zu (125 μm)^2 mit Quadratur-Oberflächenspule und bis zu (75 μm)^2 mit Vierkanal-Oberflächenspule und paralleler Bildgebungstechnologie werden deutliche Strukturen wie laminare Schichten und kortikale Säulen im somatosensorischen Kortex sowie thalamische Aktivierung im VPL detektiert. Diese Ergebnisse ermöglichen neue Untersuchungen mit bisher nicht bekannter Auflösung und Kontrast in dieser Region. Zudem wird der Anstieg des BOLD-Kontrastes für SE- und GE-EPI mit steigender räumlicher Auflösung aufgrund fallender Partialvolumen-Effekte bestätigt und quantifiziert
    corecore