53 research outputs found

    The necessary and sufficient conditions of copositive tensors

    Full text link
    In this paper, it is proved that (strict) copositivity of a symmetric tensor A\mathcal{A} is equivalent to the fact that every principal sub-tensor of A\mathcal{A} has no a (non-positive) negative H++H^{++}-eigenvalue. The necessary and sufficient conditions are also given in terms of the Z++Z^{++}-eigenvalue of the principal sub-tensor of the given tensor. This presents a method of testing (strict) copositivity of a symmetric tensor by means of the lower dimensional tensors. Also the equivalent definition of strictly copositive tensors is given on entire space Rn\mathbb{R}^n.Comment: 13 pages. arXiv admin note: text overlap with arXiv:1302.608

    An Alternative Perspective on Copositive and Convex Relaxations of Nonconvex Quadratic Programs

    Full text link
    We study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family implicitly induces a convex underestimator of the objective function on the feasible region of the quadratic program. This alternative perspective on convex relaxations enables us to establish several useful properties of the corresponding convex underestimators. In particular, if the recession cone of the feasible region of the quadratic program does not contain any directions of negative curvature, we show that the convex underestimator arising from the copositive relaxation is precisely the convex envelope of the objective function of the quadratic program, providing another proof of Burer's well-known result on the exactness of the copositive relaxation. We also present an algorithmic recipe for constructing instances of quadratic programs with a finite optimal value but an unbounded doubly nonnegative relaxation.Comment: 26 page

    (Global) Optimization: Historical notes and recent developments

    Get PDF
    Recent developments in (Global) Optimization are surveyed in this paper. We collected and commented quite a large number of recent references which, in our opinion, well represent the vivacity, deepness, and width of scope of current computational approaches and theoretical results about nonconvex optimization problems. Before the presentation of the recent developments, which are subdivided into two parts related to heuristic and exact approaches, respectively, we briefly sketch the origin of the discipline and observe what, from the initial attempts, survived, what was not considered at all as well as a few approaches which have been recently rediscovered, mostly in connection with machine learning
    corecore