1,800 research outputs found

    Generative Multi-Agent Behavioral Cloning

    Get PDF
    We propose and study the problem of generative multi-agent behavioral cloning, where the goal is to learn a generative, i.e., non-deterministic, multi-agent policy from pre-collected demonstration data. Building upon advances in deep generative models, we present a hierarchical policy framework that can tractably learn complex mappings from input states to distributions over multi-agent action spaces by introducing a hierarchy with macro-intent variables that encode long-term intent. In addition to synthetic settings, we show how to instantiate our framework to effectively model complex interactions between basketball players and generate realistic multi-agent trajectories of basketball gameplay over long time periods. We validate our approach using both quantitative and qualitative evaluations, including a user study comparison conducted with professional sports analysts

    Generating Multi-Agent Trajectories using Programmatic Weak Supervision

    Get PDF
    We study the problem of training sequential generative models for capturing coordinated multi-agent trajectory behavior, such as offensive basketball gameplay. When modeling such settings, it is often beneficial to design hierarchical models that can capture long-term coordination using intermediate variables. Furthermore, these intermediate variables should capture interesting high-level behavioral semantics in an interpretable and manipulatable way. We present a hierarchical framework that can effectively learn such sequential generative models. Our approach is inspired by recent work on leveraging programmatically produced weak labels, which we extend to the spatiotemporal regime. In addition to synthetic settings, we show how to instantiate our framework to effectively model complex interactions between basketball players and generate realistic multi-agent trajectories of basketball gameplay over long time periods. We validate our approach using both quantitative and qualitative evaluations, including a user study comparison conducted with professional sports analysts

    Automated Top View Registration of Broadcast Football Videos

    Full text link
    In this paper, we propose a novel method to register football broadcast video frames on the static top view model of the playing surface. The proposed method is fully automatic in contrast to the current state of the art which requires manual initialization of point correspondences between the image and the static model. Automatic registration using existing approaches has been difficult due to the lack of sufficient point correspondences. We investigate an alternate approach exploiting the edge information from the line markings on the field. We formulate the registration problem as a nearest neighbour search over a synthetically generated dictionary of edge map and homography pairs. The synthetic dictionary generation allows us to exhaustively cover a wide variety of camera angles and positions and reduce this problem to a minimal per-frame edge map matching procedure. We show that the per-frame results can be improved in videos using an optimization framework for temporal camera stabilization. We demonstrate the efficacy of our approach by presenting extensive results on a dataset collected from matches of football World Cup 2014

    Fine-Grained Retrieval of Sports Plays using Tree-Based Alignment of Trajectories

    Get PDF
    We propose a novel method for effective retrieval of multi-agent spatiotemporal tracking data. Retrieval of spatiotemporal tracking data offers several unique challenges compared to conventional text-based retrieval settings. Most notably, the data is fine-grained meaning that the specific location of agents is important in describing behavior. Additionally, the data often contains tracks of multiple agents (e.g., multiple players in a sports game), which generally leads to a permutational alignment problem when performing relevance estimation. Due to the frequent position swap of agents, it is difficult to maintain the correspondence of agents, and such issues make the pairwise comparison problematic for multi-agent spatiotemporal data. To address this issue, we propose a tree-based method to estimate the relevance between multi-agent spatiotemporal tracks. It uses a hierarchical structure to perform multi-agent data alignment and partitioning in a coarse-to-fine fashion. We validate our approach via user studies with domain experts. Our results show that our method boosts performance in retrieving similar sports plays -- especially in interactive situations where the user selects a subset of trajectories compared to current state-of-the-art methods
    • …
    corecore