166,337 research outputs found

    Representation of Functional Data in Neural Networks

    Get PDF
    Functional Data Analysis (FDA) is an extension of traditional data analysis to functional data, for example spectra, temporal series, spatio-temporal images, gesture recognition data, etc. Functional data are rarely known in practice; usually a regular or irregular sampling is known. For this reason, some processing is needed in order to benefit from the smooth character of functional data in the analysis methods. This paper shows how to extend the Radial-Basis Function Networks (RBFN) and Multi-Layer Perceptron (MLP) models to functional data inputs, in particular when the latter are known through lists of input-output pairs. Various possibilities for functional processing are discussed, including the projection on smooth bases, Functional Principal Component Analysis, functional centering and reduction, and the use of differential operators. It is shown how to incorporate these functional processing into the RBFN and MLP models. The functional approach is illustrated on a benchmark of spectrometric data analysis.Comment: Also available online from: http://www.sciencedirect.com/science/journal/0925231

    Towards glass-box CNNs

    Full text link
    With the substantial performance of neural networks in sensitive fields increases the need for interpretable deep learning models. Major challenge is to uncover the multiscale and distributed representation hidden inside the basket mappings of the deep neural networks. Researchers have been trying to comprehend it through visual analysis of features, mathematical structures, or other data-driven approaches. Here, we work on implementation invariances of CNN-based representations and present an analytical binary prototype that provides useful insights for large scale real-life applications. We begin by unfolding conventional CNN and then repack it with a more transparent representation. Inspired by the attainment of neural networks, we choose to present our findings as a three-layer model. First is a representation layer that encompasses both the class information (group invariant) and symmetric transformations (group equivariant) of input images. Through these transformations, we decrease intra-class distance and increase the inter-class distance. It is then passed through a dimension reduction layer followed by a classifier. The proposed representation is compared with the equivariance of AlexNet (CNN) internal representation for better dissemination of simulation results. We foresee following immediate advantages of this toy version: i) contributes pre-processing of data to increase the feature or class separability in large scale problems, ii) helps designing neural architecture to improve the classification performance in multi-class problems, and iii) helps building interpretable CNN through scalable functional blocks

    Neural Functional Transformers

    Full text link
    The recent success of neural networks as implicit representation of data has driven growing interest in neural functionals: models that can process other neural networks as input by operating directly over their weight spaces. Nevertheless, constructing expressive and efficient neural functional architectures that can handle high-dimensional weight-space objects remains challenging. This paper uses the attention mechanism to define a novel set of permutation equivariant weight-space layers and composes them into deep equivariant models called neural functional Transformers (NFTs). NFTs respect weight-space permutation symmetries while incorporating the advantages of attention, which have exhibited remarkable success across multiple domains. In experiments processing the weights of feedforward MLPs and CNNs, we find that NFTs match or exceed the performance of prior weight-space methods. We also leverage NFTs to develop Inr2Array, a novel method for computing permutation invariant latent representations from the weights of implicit neural representations (INRs). Our proposed method improves INR classification accuracy by up to +17%+17\% over existing methods. We provide an implementation of our layers at https://github.com/AllanYangZhou/nfn

    Geographic Location Encoding with Spherical Harmonics and Sinusoidal Representation Networks

    Full text link
    Learning feature representations of geographical space is vital for any machine learning model that integrates geolocated data, spanning application domains such as remote sensing, ecology, or epidemiology. Recent work mostly embeds coordinates using sine and cosine projections based on Double Fourier Sphere (DFS) features -- these embeddings assume a rectangular data domain even on global data, which can lead to artifacts, especially at the poles. At the same time, relatively little attention has been paid to the exact design of the neural network architectures these functional embeddings are combined with. This work proposes a novel location encoder for globally distributed geographic data that combines spherical harmonic basis functions, natively defined on spherical surfaces, with sinusoidal representation networks (SirenNets) that can be interpreted as learned Double Fourier Sphere embedding. We systematically evaluate the cross-product of positional embeddings and neural network architectures across various classification and regression benchmarks and synthetic evaluation datasets. In contrast to previous approaches that require the combination of both positional encoding and neural networks to learn meaningful representations, we show that both spherical harmonics and sinusoidal representation networks are competitive on their own but set state-of-the-art performances across tasks when combined. We provide source code at www.github.com/marccoru/locationencode

    Intrinsic functional network contributions to the relationship between trait empathy and subjective happiness

    Get PDF
    幸福感と共感性を関連付ける安静時脳機能ネットワークの解明 --前頭前皮質の機能的結合性の役割--. 京都大学プレスリリース. 2021-01-08.Subjective happiness (well-being) is a multi-dimensional construct indexing one's evaluations of everyday emotional experiences and life satisfaction, and has been associated with different aspects of trait empathy. Despite previous research identifying the neural substrates of subjective happiness and empathy, the mechanisms mediating the relationship between the two constructs remain largely unclear. Here, we performed a data-driven, multi-voxel pattern analysis of whole-brain intrinsic functional connectivity to reveal the neural mechanisms of subjective happiness and trait empathy in a sample of young females. Behaviorally, we found that subjective happiness was negatively associated with personal distress (i.e., self-referential experience of others’ feelings). Consistent with this inverse relationship, subjective happiness was associated with the dorsolateral prefrontal cortex exhibiting decreased functional connectivity with regions important for the representation of unimodal sensorimotor information (e.g., primary sensory cortices) or multi-modal summaries of brain states (e.g., default mode network) and increased functional connectivity with regions important for the attentional modulation of these representations (e.g., frontoparietal, attention networks). Personal distress was associated with the medial prefrontal cortex exhibiting functional connectivity differences with similar networks––but in the opposite direction. Finally, intrinsic functional connectivity within and between these networks fully mediated the relationship between the two behavioral measures. These results identify an important contribution of the macroscale functional organization of the brain to human well-being, by demonstrating that lower levels of personal distress lead to higher subjective happiness through variation in intrinsic functional connectivity along a neural representation vs. modulation gradient

    Joint Group Invariant Functions on Data-Parameter Domain Induce Universal Neural Networks

    Full text link
    The symmetry and geometry of input data are considered to be encoded in the internal data representation inside the neural network, but the specific encoding rule has been less investigated. In this study, we present a systematic method to induce a generalized neural network and its right inverse operator, called the ridgelet transform, from a joint group invariant function on the data-parameter domain. Since the ridgelet transform is an inverse, (1) it can describe the arrangement of parameters for the network to represent a target function, which is understood as the encoding rule, and (2) it implies the universality of the network. Based on the group representation theory, we present a new simple proof of the universality by using Schur's lemma in a unified manner covering a wide class of networks, for example, the original ridgelet transform, formal deep networks, and the dual voice transform. Since traditional universality theorems were demonstrated based on functional analysis, this study sheds light on the group theoretic aspect of the approximation theory, connecting geometric deep learning to abstract harmonic analysis.Comment: NeurReps 202

    Preserving Differential Privacy in Convolutional Deep Belief Networks

    Full text link
    The remarkable development of deep learning in medicine and healthcare domain presents obvious privacy issues, when deep neural networks are built on users' personal and highly sensitive data, e.g., clinical records, user profiles, biomedical images, etc. However, only a few scientific studies on preserving privacy in deep learning have been conducted. In this paper, we focus on developing a private convolutional deep belief network (pCDBN), which essentially is a convolutional deep belief network (CDBN) under differential privacy. Our main idea of enforcing epsilon-differential privacy is to leverage the functional mechanism to perturb the energy-based objective functions of traditional CDBNs, rather than their results. One key contribution of this work is that we propose the use of Chebyshev expansion to derive the approximate polynomial representation of objective functions. Our theoretical analysis shows that we can further derive the sensitivity and error bounds of the approximate polynomial representation. As a result, preserving differential privacy in CDBNs is feasible. We applied our model in a health social network, i.e., YesiWell data, and in a handwriting digit dataset, i.e., MNIST data, for human behavior prediction, human behavior classification, and handwriting digit recognition tasks. Theoretical analysis and rigorous experimental evaluations show that the pCDBN is highly effective. It significantly outperforms existing solutions
    corecore