12,208 research outputs found

    CNN for Very Fast Ground Segmentation in Velodyne LiDAR Data

    Full text link
    This paper presents a novel method for ground segmentation in Velodyne point clouds. We propose an encoding of sparse 3D data from the Velodyne sensor suitable for training a convolutional neural network (CNN). This general purpose approach is used for segmentation of the sparse point cloud into ground and non-ground points. The LiDAR data are represented as a multi-channel 2D signal where the horizontal axis corresponds to the rotation angle and the vertical axis the indexes channels (i.e. laser beams). Multiple topologies of relatively shallow CNNs (i.e. 3-5 convolutional layers) are trained and evaluated using a manually annotated dataset we prepared. The results show significant improvement of performance over the state-of-the-art method by Zhang et al. in terms of speed and also minor improvements in terms of accuracy.Comment: ICRA 2018 submissio

    A Prehistory of n-Categorical Physics

    Full text link
    This paper traces the growing role of categories and n-categories in physics, starting with groups and their role in relativity, and leading up to more sophisticated concepts which manifest themselves in Feynman diagrams, spin networks, string theory, loop quantum gravity, and topological quantum field theory. Our chronology ends around 2000, with just a taste of later developments such as open-closed topological string theory, the categorification of quantum groups, Khovanov homology, and Lurie's work on the classification of topological quantum field theories.Comment: 129 pages, 8 eps figure

    Network Topology Mapping from Partial Virtual Coordinates and Graph Geodesics

    Full text link
    For many important network types (e.g., sensor networks in complex harsh environments and social networks) physical coordinate systems (e.g., Cartesian), and physical distances (e.g., Euclidean), are either difficult to discern or inapplicable. Accordingly, coordinate systems and characterizations based on hop-distance measurements, such as Topology Preserving Maps (TPMs) and Virtual-Coordinate (VC) systems are attractive alternatives to Cartesian coordinates for many network algorithms. Herein, we present an approach to recover geometric and topological properties of a network with a small set of distance measurements. In particular, our approach is a combination of shortest path (often called geodesic) recovery concepts and low-rank matrix completion, generalized to the case of hop-distances in graphs. Results for sensor networks embedded in 2-D and 3-D spaces, as well as a social networks, indicates that the method can accurately capture the network connectivity with a small set of measurements. TPM generation can now also be based on various context appropriate measurements or VC systems, as long as they characterize different nodes by distances to small sets of random nodes (instead of a set of global anchors). The proposed method is a significant generalization that allows the topology to be extracted from a random set of graph shortest paths, making it applicable in contexts such as social networks where VC generation may not be possible.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1712.1006

    Indirect Image Registration with Large Diffeomorphic Deformations

    Full text link
    The paper adapts the large deformation diffeomorphic metric mapping framework for image registration to the indirect setting where a template is registered against a target that is given through indirect noisy observations. The registration uses diffeomorphisms that transform the template through a (group) action. These diffeomorphisms are generated by solving a flow equation that is defined by a velocity field with certain regularity. The theoretical analysis includes a proof that indirect image registration has solutions (existence) that are stable and that converge as the data error tends so zero, so it becomes a well-defined regularization method. The paper concludes with examples of indirect image registration in 2D tomography with very sparse and/or highly noisy data.Comment: 43 pages, 4 figures, 1 table; revise
    • …
    corecore