6,092 research outputs found

    Contrastive Difference Predictive Coding

    Full text link
    Predicting and reasoning about the future lie at the heart of many time-series questions. For example, goal-conditioned reinforcement learning can be viewed as learning representations to predict which states are likely to be visited in the future. While prior methods have used contrastive predictive coding to model time series data, learning representations that encode long-term dependencies usually requires large amounts of data. In this paper, we introduce a temporal difference version of contrastive predictive coding that stitches together pieces of different time series data to decrease the amount of data required to learn predictions of future events. We apply this representation learning method to derive an off-policy algorithm for goal-conditioned RL. Experiments demonstrate that, compared with prior RL methods, ours achieves 2×2 \times median improvement in success rates and can better cope with stochastic environments. In tabular settings, we show that our method is about 20×20 \times more sample efficient than the successor representation and 1500×1500 \times more sample efficient than the standard (Monte Carlo) version of contrastive predictive coding.Comment: Website (https://chongyi-zheng.github.io/td_infonce) and code (https://github.com/chongyi-zheng/td_infonce

    An Unsupervised Autoregressive Model for Speech Representation Learning

    Full text link
    This paper proposes a novel unsupervised autoregressive neural model for learning generic speech representations. In contrast to other speech representation learning methods that aim to remove noise or speaker variabilities, ours is designed to preserve information for a wide range of downstream tasks. In addition, the proposed model does not require any phonetic or word boundary labels, allowing the model to benefit from large quantities of unlabeled data. Speech representations learned by our model significantly improve performance on both phone classification and speaker verification over the surface features and other supervised and unsupervised approaches. Further analysis shows that different levels of speech information are captured by our model at different layers. In particular, the lower layers tend to be more discriminative for speakers, while the upper layers provide more phonetic content.Comment: Accepted to Interspeech 2019. Code available at: https://github.com/iamyuanchung/Autoregressive-Predictive-Codin
    • …
    corecore