2 research outputs found

    mvn2vec: Preservation and Collaboration in Multi-View Network Embedding

    Full text link
    Multi-view networks are broadly present in real-world applications. In the meantime, network embedding has emerged as an effective representation learning approach for networked data. Therefore, we are motivated to study the problem of multi-view network embedding with a focus on the optimization objectives that are specific and important in embedding this type of network. In our practice of embedding real-world multi-view networks, we explicitly identify two such objectives, which we refer to as preservation and collaboration. The in-depth analysis of these two objectives is discussed throughout this paper. In addition, the mvn2vec algorithms are proposed to (i) study how varied extent of preservation and collaboration can impact embedding learning and (ii) explore the feasibility of achieving better embedding quality by modeling them simultaneously. With experiments on a series of synthetic datasets, a large-scale internal Snapchat dataset, and two public datasets, we confirm the validity and importance of preservation and collaboration as two objectives for multi-view network embedding. These experiments further demonstrate that better embedding can be obtained by simultaneously modeling the two objectives, while not over-complicating the model or requiring additional supervision. The code and the processed datasets are available at http://yushi2.web.engr.illinois.edu/

    Multilayer Network Analysis for Improved Credit Risk Prediction

    Full text link
    We present a multilayer network model for credit risk assessment. Our model accounts for multiple connections between borrowers (such as their geographic location and their economic activity) and allows for explicitly modelling the interaction between connected borrowers. We develop a multilayer personalized PageRank algorithm that allows quantifying the strength of the default exposure of any borrower in the network. We test our methodology in an agricultural lending framework, where it has been suspected for a long time default correlates between borrowers when they are subject to the same structural risks. Our results show there are significant predictive gains just by including centrality multilayer network information in the model, and these gains are increased by more complex information such as the multilayer PageRank variables. The results suggest default risk is highest when an individual is connected to many defaulters, but this risk is mitigated by the size of the neighbourhood of the individual, showing both default risk and financial stability propagate throughout the network.Comment: 24 pages, 15 figures. v4 - accepte
    corecore