1,792 research outputs found

    Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report

    Full text link
    The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper

    LW-ISP: A Lightweight Model with ISP and Deep Learning

    Full text link
    The deep learning (DL)-based methods of low-level tasks have many advantages over the traditional camera in terms of hardware prospects, error accumulation and imaging effects. Recently, the application of deep learning to replace the image signal processing (ISP) pipeline has appeared one after another; however, there is still a long way to go towards real landing. In this paper, we show the possibility of learning-based method to achieve real-time high-performance processing in the ISP pipeline. We propose LW-ISP, a novel architecture designed to implicitly learn the image mapping from RAW data to RGB image. Based on U-Net architecture, we propose the fine-grained attention module and a plug-and-play upsampling block suitable for low-level tasks. In particular, we design a heterogeneous distillation algorithm to distill the implicit features and reconstruction information of the clean image, so as to guide the learning of the student model. Our experiments demonstrate that LW-ISP has achieved a 0.38 dB improvement in PSNR compared to the previous best method, while the model parameters and calculation have been reduced by 23 times and 81 times. The inference efficiency has been accelerated by at least 15 times. Without bells and whistles, LW-ISP has achieved quite competitive results in ISP subtasks including image denoising and enhancement.Comment: 16 PAGES, ACCEPTED AS A CONFERENCE PAPER AT: BMVC 202

    PyNET-CA: Enhanced PyNET with Channel Attention for End-to-End Mobile Image Signal Processing

    Full text link
    Reconstructing RGB image from RAW data obtained with a mobile device is related to a number of image signal processing (ISP) tasks, such as demosaicing, denoising, etc. Deep neural networks have shown promising results over hand-crafted ISP algorithms on solving these tasks separately, or even replacing the whole reconstruction process with one model. Here, we propose PyNET-CA, an end-to-end mobile ISP deep learning algorithm for RAW to RGB reconstruction. The model enhances PyNET, a recently proposed state-of-the-art model for mobile ISP, and improve its performance with channel attention and subpixel reconstruction module. We demonstrate the performance of the proposed method with comparative experiments and results from the AIM 2020 learned smartphone ISP challenge. The source code of our implementation is available at https://github.com/egyptdj/skyb-aim2020-publicComment: ECCV 2020 AIM workshop accepted versio

    MetaISP -- Exploiting Global Scene Structure for Accurate Multi-Device Color Rendition

    Full text link
    Image signal processors (ISPs) are historically grown legacy software systems for reconstructing color images from noisy raw sensor measurements. Each smartphone manufacturer has developed its ISPs with its own characteristic heuristics for improving the color rendition, for example, skin tones and other visually essential colors. The recent interest in replacing the historically grown ISP systems with deep-learned pipelines to match DSLR's image quality improves structural features in the image. However, these works ignore the superior color processing based on semantic scene analysis that distinguishes mobile phone ISPs from DSLRs. Here, we present MetaISP, a single model designed to learn how to translate between the color and local contrast characteristics of different devices. MetaISP takes the RAW image from device A as input and translates it to RGB images that inherit the appearance characteristics of devices A, B, and C. We achieve this result by employing a lightweight deep learning technique that conditions its output appearance based on the device of interest. In this approach, we leverage novel attention mechanisms inspired by cross-covariance to learn global scene semantics. Additionally, we use the metadata that typically accompanies RAW images and estimate scene illuminants when they are unavailable.Comment: VMV 2023, Project page: https://www.github.com/vccimaging/MetaIS
    • …
    corecore