8 research outputs found

    Repairing GUI Test Suites Using a Genetic Algorithm

    Full text link

    A Survey of Constrained Combinatorial Testing

    Get PDF
    Combinatorial Testing (CT) is a potentially powerful testing technique, whereas its failure revealing ability might be dramatically reduced if it fails to handle constraints in an adequate and efficient manner. To ensure the wider applicability of CT in the presence of constrained problem domains, large and diverse efforts have been invested towards the techniques and applications of constrained combinatorial testing. In this paper, we provide a comprehensive survey of representations, influences, and techniques that pertain to constraints in CT, covering 129 papers published between 1987 and 2018. This survey not only categorises the various constraint handling techniques, but also reviews comparatively less well-studied, yet potentially important, constraint identification and maintenance techniques. Since real-world programs are usually constrained, this survey can be of interest to researchers and practitioners who are looking to use and study constrained combinatorial testing techniques

    Automated blackbox GUI specifications enhancement and test data generation

    Get PDF
    Applications with a Graphical User Interface (GUI) front-end are ubiquitous nowadays. While automated model-based approaches have been shown to be effective in testing of such applications, most existing techniques produce many infeasible event sequences used as GUI test cases. This happens primarily because the behavioral specifications of the GUI under test are ignored. In this dissertation we present an automated framework that reveals an important set of state-based constraints among GUI events based on infeasible (i.e., unexecutable or partially executable) test cases of a GUI test suite. GUIDiVa, an iterative algorithm at the core of our framework, enumerates all possible constraint violations as potential reasons for test case failure, on the failed event of an infeasible test case. It then selects and adds the most promising constraints of each iteration to a final set based on the Validity Weight of constraints. The results of empirical studies on both seeded and nine non-trivial open-source study subjects show that our framework is capable of capturing important aspects of GUI behavior in the form of state-based event constraints, while considerably reducing the number of insfeasible test cases. The second part of this dissertation deals with the problem of automatic generation of relevant test data for parameterized GUI events (i.e., events associated with widgets that accept user inputs such as textboxes and textareas). Current techniques either manipulate the source code of the application under test (AUT) to generate the test data, or blindly use a set of random string values. We propose a novel way to generate the test data by exploiting the information provided in the GUI structure to extract a set of key identifiers for each parameterized GUI widget. These identifiers are used to compose appropriate online search phrases and collect relevant test data from the Internet. The results of an empirical study on five GUI-based applications show that the proposed approach is applicable and results in execution of some hard-to-cover branches in the subject programs. The proposed technique works from a black-box perspective and is entirely independent from GUI modeling and event sequence generation, thus it does not require source code access and offers the possibility of being integrated with existing GUI testing frameworks

    Search-based inference of polynomial metamorphic relations

    Full text link
    Metamorphic testing (MT) is an effective methodology for testing those so-called 'non-testable' programs (e.g., scientific programs), where it is sometimes very difficult for testers to know whether the outputs are correct. In metamorphic testing, metamorphic relations (MRs) (which specify how particular changes to the input of the program under test would change the output) play an essential role. However, testers may typically have to obtain MRs manually. In this paper, we propose a search-based approach to automatic inference of polynomial MRs for a program under test. In particular, we use a set of parameters to represent a particular class of MRs, which we refer to as polynomial MRs, and turn the problem of inferring MRs into a problem of searching for suitable values of the parameters. We then dynamically analyze multiple executions of the program, and use particle swarm optimization to solve the search problem. To improve the quality of inferred MRs, we further use MR filtering to remove some inferred MRs. We also conducted three empirical studies to evaluate our approach using four scientific libraries (including 189 scientific functions). From our empirical results, our approach is able to infer many high-quality MRs in acceptable time (i.e., from 9.87 seconds to 1231.16 seconds), which are effective in detecting faults with no false detection. ? 2014 ACM.EI

    Why do Record/Replay Tests of Web Applications Break?

    Full text link
    Software engineers often use record/replay tools to enable the automated testing of web applications. Tests created in this manner can then be used to regression test new versions of the web applications as they evolve. Web application tests recorded by record/replay tools, however, can be quite brittle, they can easily break as applications change. For this reason, researchers have begun to seek approaches for automatically repairing record/replay tests. To date, however, there have been no comprehensive attempts to characterize the causes of breakagesin record/replay tests for web applications. In this work, wepresent a taxonomy classifying the ways in which record/replay tests for web applications break, based on an analysis of 453 versions of popular web applications for which 1065 individual test breakages were recognized. The resulting taxonomy can help direct researchers in their attempts to repair such tests. It can also help practitioners by suggesting best practices when creating tests or modifying programs, and can help researchers with other tasks such as test robustness analysis and IDE design
    corecore