2 research outputs found

    Repairing 3D binary images using the FCC grid

    No full text
    A 3D image I is well-composed if it does not contain critical edges or vertices (where the boundary of I is non-manifold). The process of transforming an image into a well composed one is called repairing. We propose to repair 3D images by associating the face-centered cubic grid (FCC grid) with the cubic grid. We show that the polyhedral complex in the FCC grid, obtained by our repairing algorithm, is well composed and homotopy equivalent to the complex naturally associated with the given image I with edge-adjacency (18-adjacency). We illustrate an application on two tasks related to the repaired image: boundary reconstruction and computation of its Euler characteristic

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise
    corecore