560 research outputs found

    Repairable Block Failure Resilient Codes

    Full text link
    In large scale distributed storage systems (DSS) deployed in cloud computing, correlated failures resulting in simultaneous failure (or, unavailability) of blocks of nodes are common. In such scenarios, the stored data or a content of a failed node can only be reconstructed from the available live nodes belonging to available blocks. To analyze the resilience of the system against such block failures, this work introduces the framework of Block Failure Resilient (BFR) codes, wherein the data (e.g., file in DSS) can be decoded by reading out from a same number of codeword symbols (nodes) from each available blocks of the underlying codeword. Further, repairable BFR codes are introduced, wherein any codeword symbol in a failed block can be repaired by contacting to remaining blocks in the system. Motivated from regenerating codes, file size bounds for repairable BFR codes are derived, trade-off between per node storage and repair bandwidth is analyzed, and BFR-MSR and BFR-MBR points are derived. Explicit codes achieving these two operating points for a wide set of parameters are constructed by utilizing combinatorial designs, wherein the codewords of the underlying outer codes are distributed to BFR codeword symbols according to projective planes

    Distributed Storage Systems based on Equidistant Subspace Codes

    Full text link
    Distributed storage systems based on equidistant constant dimension codes are presented. These equidistant codes are based on the Pl\"{u}cker embedding, which is essential in the repair and the reconstruction algorithms. These systems posses several useful properties such as high failure resilience, minimum bandwidth, low storage, simple algebraic repair and reconstruction algorithms, good locality, and compatibility with small fields

    Repairable Replication-based Storage Systems Using Resolvable Designs

    Get PDF
    We consider the design of regenerating codes for distributed storage systems at the minimum bandwidth regeneration (MBR) point. The codes allow for a repair process that is exact and uncoded, but table-based. These codes were introduced in prior work and consist of an outer MDS code followed by an inner fractional repetition (FR) code where copies of the coded symbols are placed on the storage nodes. The main challenge in this domain is the design of the inner FR code. In our work, we consider generalizations of FR codes, by establishing their connection with a family of combinatorial structures known as resolvable designs. Our constructions based on affine geometries, Hadamard designs and mutually orthogonal Latin squares allow the design of systems where a new node can be exactly regenerated by downloading β≥1\beta \geq 1 packets from a subset of the surviving nodes (prior work only considered the case of β=1\beta = 1). Our techniques allow the design of systems over a large range of parameters. Specifically, the repetition degree of a symbol, which dictates the resilience of the system can be varied over a large range in a simple manner. Moreover, the actual table needed for the repair can also be implemented in a rather straightforward way. Furthermore, we answer an open question posed in prior work by demonstrating the existence of codes with parameters that are not covered by Steiner systems

    Replication based storage systems with local repair

    Get PDF
    We consider the design of regenerating codes for distributed storage systems that enjoy the property of local, exact and uncoded repair, i.e., (a) upon failure, a node can be regenerated by simply downloading packets from the surviving nodes and (b) the number of surviving nodes contacted is strictly smaller than the number of nodes that need to be contacted for reconstructing the stored file. Our codes consist of an outer MDS code and an inner fractional repetition code that specifies the placement of the encoded symbols on the storage nodes. For our class of codes, we identify the tradeoff between the local repair property and the minimum distance. We present codes based on graphs of high girth, affine resolvable designs and projective planes that meet the minimum distance bound for specific choices of file sizes

    Optimal Locally Repairable and Secure Codes for Distributed Storage Systems

    Full text link
    This paper aims to go beyond resilience into the study of security and local-repairability for distributed storage systems (DSS). Security and local-repairability are both important as features of an efficient storage system, and this paper aims to understand the trade-offs between resilience, security, and local-repairability in these systems. In particular, this paper first investigates security in the presence of colluding eavesdroppers, where eavesdroppers are assumed to work together in decoding stored information. Second, the paper focuses on coding schemes that enable optimal local repairs. It further brings these two concepts together, to develop locally repairable coding schemes for DSS that are secure against eavesdroppers. The main results of this paper include: a. An improved bound on the secrecy capacity for minimum storage regenerating codes, b. secure coding schemes that achieve the bound for some special cases, c. a new bound on minimum distance for locally repairable codes, d. code construction for locally repairable codes that attain the minimum distance bound, and e. repair-bandwidth-efficient locally repairable codes with and without security constraints.Comment: Submitted to IEEE Transactions on Information Theor
    • …
    corecore