6 research outputs found

    Rendering non-pictorial (Scientific) high dynamic range images

    Get PDF
    In recent years, the graphics community is seeing an increasing demand for the capture and usage of high-dynamic-range (HDR) images. Since the production of HDR imagery is not solely the domain of the visualization of real life or computer generated scenes, novel techniques are also required for imagery captured from non-visual sources such as remote sensing, medical imaging, astronomical imaging, etc. This research proposes to integrate the techniques used for the display of high-dynamic-range pictorial imagery for the practical visualization of non-pictorial (scientific) imagery for data mining and interpretation. Nine algorithms were utilized to overcome the problem associated with rendering the high-dynamic-range image data to low-dynamic-range display devices, and the results were evaluated using a psychophysical experiment. Two paired-comparison experiments and a target detection experiment were performed. Paired-comparison results indicate that the Zone System performs the best on average and the Local Color Correction method performs the worst. The results show that the performance of different encoding schemes depend on the type of data being visualized. The correlation between the preference and scientific usefulness judgments (R2 = 0.31) demonstrates that observers tend to use different criteria when judging the scientific usefulness versus image preference. The experiment was conducted using observers with expertise (Radiologists) for the Medical image to further elucidate the success of HDR rendering on these data. The results indicated that both Radiologists and Non-radiologists tend to use similar criteria regardless of their experience and expertise when judging the usefulness of rendered images. A target detection experiment was conducted to measure the detectability of an embedded noise target in the Medical image to demonstrate the effect of the tone mapping operators on target detection. The result of the target detection experiment illustrated that the detectability of targets the image is greatly influenced by the rendering algorithm due to the inherent differences in tone mapping among the algorithms

    Impact of Tone-mapping Algorithms on Subjective and Objective Face Recognition in HDR Images

    Get PDF
    Crowdsourcing is a popular tool for conducting subjective evaluations in uncontrolled environments and at low cost. In this paper, a crowdsourcing study is conducted to investigate the impact of High Dynamic Range (HDR) imaging on subjective face recognition accuracy. For that purpose, a dataset of HDR images of people depicted in high-contrast lighting conditions was created and their faces were manually cropped to construct a probe set of faces. Crowdsourcing-based face recognition was conducted for five differently tone-mapped versions of HDR faces and were compared to face recognition in a typical Low Dynamic Range alternative. A similar experiment was also conducted using three automatic face recognition algorithms. The comparative analysis results of face recognition by human subjects through crowdsourcing and machine vision face recognition show that HDR imaging affects the recognition results of human and computer vision approaches differently

    Crowdsourcing-based Evaluation of Privacy in HDR Images

    Get PDF
    The ability of High Dynamic Range imaging (HDRi) to capture details in high-contrast environments, making both dark and bright regions clearly visible, has a strong implication on privacy. However, the extent to which HDRi affects privacy when it is used instead of typical Standard Dynamic Range imaging (SDRi) is not yet clear. In this paper, we investigate the effect of HDRi on privacy via crowdsourcing evaluation using the Microworkers platform. Due to the lack of HDRi standard privacy evaluation dataset, we have created such dataset containing people of varying gender, race, and age, shot indoor and outdoor and under large range of lighting conditions. We evaluate the tone-mapped versions of these images, obtained by several representative tone-mapping algorithms, using subjective privacy evaluation methodology. Evaluation was performed using crowdsourcing-based framework, because it is a popular and effective alternative to traditional lab-based assessment. The results of the experiments demonstrate a significant loss of privacy when even tone-mapped versions of HDR images are used compared to typical SDR images shot with a standard exposure

    A JPEG backward-compatible HDR image compression

    Get PDF
    High Dynamic Range (HDR) imaging is expected to become one of the technologies that could shape next generation of consumer digital photography. Manufacturers are rolling out cameras and displays capable of capturing and rendering HDR images. The popularity and full public adoption of HDR content is however hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of Low Dynamic Range (LDR) displays that are unable to render HDR. To facilitate wide spread of HDR usage, the backward compatibility of HDR technology with commonly used legacy image storage, rendering, and compression is necessary. Although many tone-mapping algorithms were developed for generating viewable LDR images from HDR content, there is no consensus on which algorithm to use and under which conditions. This paper, via a series of subjective evaluations, demonstrates the dependency of perceived quality of the tone-mapped LDR images on environmental parameters and image content. Based on the results of subjective tests, it proposes to extend JPEG file format, as the most popular image format, in a backward compatible manner to also deal with HDR pictures. To this end, the paper provides an architecture to achieve such backward compatibility with JPEG and demonstrates efficiency of a simple implementation of this framework when compared to the state of the art HDR image compression

    Evaluation of privacy in high dynamic range video sequences

    Get PDF
    The ability of high dynamic range (HDR) to capture details in environments with high contrast has a significant impact on privacy in video surveillance. However, the extent to which HDR imaging affects privacy, when compared to a typical low dynamic range (LDR) imaging, is neither well studied nor well understood. To achieve such an objective, a suitable dataset of images and video sequences is needed. Therefore, we have created a publicly available dataset of HDR video for privacy evaluation PEViD-HDR, which is an HDR extension of an existing Privacy Evaluation Video Dataset (PEViD). PEViD-HDR video dataset can help in the evaluations of privacy protection tools, as well as for showing the importance of HDR imaging in video surveillance applications and its influence on the privacy-intelligibility trade-off. We conducted a preliminary subjective experiment demonstrating the usability of the created dataset for evaluation of privacy issues in video. The results confirm that a tone-mapped HDR video contains more privacy sensitive information and details compared to a typical LDR video

    Assessment of Quality of Experience of High Dynamic Range Images Using the EEG and Applications in Healthcare

    Get PDF
    File embargoed until 30.09.2021 at author's request.Recent years have witnessed the widespread application of High Dynamic Range (HDR) imaging, which like the Human Visual System (HVS), has the ability to capture a wide range of luminance values. Areas of application include home-entertainment, security, scientific imaging, video processing, computer graphics, multimedia communications, and healthcare. However, in practice, HDR content cannot be displayed in full on standard or low dynamic range (LDR) displays, and this diminishes the benefits of HDR technology for many users. To address this problem, Tone-Mapping Operators (TMO) are used to convert HDR images so that they can be displayed on low-dynamic-range displays and preserve as far as possible the perception of HDR. However, this may affect the visual Quality of Experience (QoE) of the end-user. QoE is a vital issue in image and video applications. It is important to understand how humans perceive quality in response to visual stimuli as this can potentially be exploited to develop and optimise image and video processing algorithms. Image consumption using mobile devices has become increasingly popular, given the availability of smartphones capable of producing and consuming HDR images along with advances in high-speed wireless communication networks. One of the most critical issues associated with mobile HDR image delivery services concerns how to maximise the QoE of the delivered content for users. An open research question therefore addresses how HDR images with different types of content perform on mobile phones. Traditionally, evaluation of the perceived quality of multimedia content is conducted using subjective opinion tests (i.e., explicitly), such as Mean Opinion Scores (MOS). However, it is difficult for the user to link the quality they are experiencing to the quality scale. Moreover, MOS does not give an insight into how the user feels at a physiological level in response to satisfaction or dissatisfaction with the perceived quality. To address this issue, measures that can be taken directly (implicitly) from the participant have now begun to attract interest. The electroencephalogram (EEG) is a promising approach that can be used to assess quality related processes implicitly. However, implicit QoE approaches are still at an early stage and further research is necessary to fully understand the nature of the recorded neural signals and their associations with user-perceived quality. Nevertheless, the EEG is expected to provide additional and complementary information that will aid understanding of the human perception of content. Furthermore, it has the potential to facilitate real-time monitoring of QoE without the need for explicit rating activities. The main aim of this project was therefore to assess the QoE of HDR images employing a physiological method and to investigate its potential application in the field of healthcare. This resulted in the following five main contributions to the research literature: 1. A detailed understanding of the relationship between the subjective and objective evaluation of the most popular TMOs used for colour and greyscale HDR images. Different mobile displays and resolutions were therefore presented under normal viewing conditions for the end-user with an LDR display as a reference. Preliminary results show that, compared to computer displays, small screen devices (SSDs) such as those used in smartphones impact the performance of TMOs in that a higher resolution gave more favourable MOS results. 2. The development of a novel Electrophysiology-based QoE assessment of HDR image quality that can be used to predict perceived image quality. This was achieved by investigating the relationships between changes in EEG features and subjective quality test scores (i.e. MOS) for HDR images viewed with SSD. 3. The development of a novel QoE prediction model, based on the above findings. The model can predict user acceptability and satisfaction for various mobile HDR image scenarios based on delta-beta coupling. Subjective quality tests were conducted to develop and evaluate the model, where the HDR image quality was predicted in terms of MOS. 4. The development of a new method of detecting a colour vision deficiency (CVD) using EEG and HDR images. The results suggest that this method may provide an accurate way to detect CVD with high sensitivity and specificity (close to 100%). Potentially, the method may facilitate the development of a low-cost tool suitable for CVD diagnosis in younger people. 5. The development of an approach that enhances the quality of dental x-ray images. This uses the concepts of QoE in HDR images without re-exposing patients to ionising radiation, thus improving patient care. Potentially, the method provides the basis for an intelligent model that accurately predicts the quality of dental images. Such a model can be embedded into a tool to automatically enhance poor quality dental images.Ministry of Higher Education and Scientific Research (MoHESR
    corecore