321 research outputs found

    Removing shadows from video

    Get PDF
    This paper presents a novel approach to automatic shadow identification and removal from video input. Based on the observation that the length and position of a shadow changes linearly over a relatively long period in outdoor environments, due to the relative movement of the sun, we can distinguish a shadow from other dark regions in an input video. Subsequently, we can identify the Reference Shadow as that with the highest confidence of the aforementioned linear changes. This Reference Shadow is used to fit the shadow-free invariant model, with which the shadow-free invariant images can be computed for all frames in the input video. Our method does not require camera calibration and shadows from stationary objects, as moving objects are detected automatically

    Object's shadow removal with removal validation

    Get PDF
    We introduce in this paper, a shadow detection and removal method for moving objects especially for humans and vehicles. An effective method is presented for detecting and removing shadows from foreground figures. We assume that the foreground figures have been extracted from the input image by some background subtraction method. A figure may contain only one moving object with or without shadow. The homogeneity property of shadows is explored in a novel way for shadow detection and image division technique is used. The process is followed by filtering, removal, boundary removal and removal validation

    Robust Principal Component Analysis?

    Full text link
    This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces

    Drone Shadow Tracking

    Get PDF
    Aerial videos taken by a drone not too far above the surface may contain the drone's shadow projected on the scene. This deteriorates the aesthetic quality of videos. With the presence of other shadows, shadow removal cannot be directly applied, and the shadow of the drone must be tracked. Tracking a drone's shadow in a video is, however, challenging. The varying size, shape, change of orientation and drone altitude pose difficulties. The shadow can also easily disappear over dark areas. However, a shadow has specific properties that can be leveraged, besides its geometric shape. In this paper, we incorporate knowledge of the shadow's physical properties, in the form of shadow detection masks, into a correlation-based tracking algorithm. We capture a test set of aerial videos taken with different settings and compare our results to those of a state-of-the-art tracking algorithm.Comment: 5 pages, 4 figure

    Detecting and Shadows in the HSV Color Space Using Dynamic Thresholds

    Get PDF
    The detection of moving objects in a video sequence is an essential step in almost all the systems of vision by computer. However, because of the dynamic change in natural scenes, the detection of movement becomes a more difficult task. In this work, we propose a new method for the detection moving objects that is robust to shadows, noise and illumination changes. For this purpose, the detection phase of the proposed method is an adaptation of the MOG approach where the foreground is extracted by considering the HSV color space. To allow the method not to take shadows into consideration during the detection process, we developed a new shade removal technique based on a dynamic thresholding of detected pixels of the foreground. The calculation model of the threshold is established by two statistical analysis tools that take into account the degree of the shadow in the scene and the robustness to noise.  Experiments undertaken on a set of video sequences showed that the method put forward provides better results compared to existing methods that are limited to using static thresholds
    corecore