6,107 research outputs found

    Removable Edges in 4-Connected Graphs

    Get PDF
    Research on structural characterizations of graphs is a very popular topic in graph theory. The concepts of contractible edges and removable edges of graphs are powerful tools to study the structure of graphs and to prove properties of graphs by induction. \ud In 1998, Yin gave a convenient method to construct 4-connected graphs by using the existence of removable edges and contractible edges. He showed that a 4-connected graph can be obtained from a 2-cyclic graph by the following four operations: (i) adding edges, (ii) splitting vertices, (iii) adding vertices and removing edges, and (iv) extending vertices. Based on the above operations, we gave the following definition of removable edges in 4-connected graphs. Definition: Let GG be a 4-connected graph. For an edge ee of GG, we perform the following operations on GG: First, delete the edge ee from GG, resulting in the graph GeG-e; Second, for each vertex xx of degree 3 in GeG-e, delete xx from GeG-e and then completely connect the 3 neighbors of xx by a triangle. If multiple edges occur, we use single edges to replace them. The final resultant graph is denoted by GeG \ominus e. If GeG\ominus e is still 4-connected, then the edge ee is called "removable"; otherwise, ee is called "unremovable". In the thesis we get the following results: (1) we study how many removable edges may exist in a cycle of a 4-connected graph, and we give examples to show that our results are in some sense the best possible. (2) We obtain results on removable edges in a longest cycle of a 4-connected graph. We also show that for a 4-connected graph GG of minimum degree at least 5 or girth at least 4, any edge of GG is removable or contractible. (3) We study the distribution of removable edges on a Hamilton cycle of a 4-connected graph, and show that our results cannot be improved in some sense. (4) We prove that every 4-connected graph of order at least six except 2-cyclic graph with order 6 has at least (4G+16)/7(4|G|+16)/7 removable edges. We also give a structural characterization of 4-connected graphs for which the lower bound is sharp. (5) We study how many removable edges there are in a spanning tree of a 4-connected graph and how many removable edges exist outside a cycle of a 4-connected graph. We also give examples to show that our results can not be improved in some sense

    Edge Roman domination on graphs

    Full text link
    An edge Roman dominating function of a graph GG is a function f ⁣:E(G){0,1,2}f\colon E(G) \rightarrow \{0,1,2\} satisfying the condition that every edge ee with f(e)=0f(e)=0 is adjacent to some edge ee' with f(e)=2f(e')=2. The edge Roman domination number of GG, denoted by γR(G)\gamma'_R(G), is the minimum weight w(f)=eE(G)f(e)w(f) = \sum_{e\in E(G)} f(e) of an edge Roman dominating function ff of GG. This paper disproves a conjecture of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad stating that if GG is a graph of maximum degree Δ\Delta on nn vertices, then γR(G)ΔΔ+1n\gamma_R'(G) \le \lceil \frac{\Delta}{\Delta+1} n \rceil. While the counterexamples having the edge Roman domination numbers 2Δ22Δ1n\frac{2\Delta-2}{2\Delta-1} n, we prove that 2Δ22Δ1n+22Δ1\frac{2\Delta-2}{2\Delta-1} n + \frac{2}{2\Delta-1} is an upper bound for connected graphs. Furthermore, we provide an upper bound for the edge Roman domination number of kk-degenerate graphs, which generalizes results of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad. We also prove a sharp upper bound for subcubic graphs. In addition, we prove that the edge Roman domination numbers of planar graphs on nn vertices is at most 67n\frac{6}{7}n, which confirms a conjecture of Akbari and Qajar. We also show an upper bound for graphs of girth at least five that is 2-cell embeddable in surfaces of small genus. Finally, we prove an upper bound for graphs that do not contain K2,3K_{2,3} as a subdivision, which generalizes a result of Akbari and Qajar on outerplanar graphs

    Flows on Bidirected Graphs

    Full text link
    The study of nowhere-zero flows began with a key observation of Tutte that in planar graphs, nowhere-zero k-flows are dual to k-colourings (in the form of k-tensions). Tutte conjectured that every graph without a cut-edge has a nowhere-zero 5-flow. Seymour proved that every such graph has a nowhere-zero 6-flow. For a graph embedded in an orientable surface of higher genus, flows are not dual to colourings, but to local-tensions. By Seymour's theorem, every graph on an orientable surface without the obvious obstruction has a nowhere-zero 6-local-tension. Bouchet conjectured that the same should hold true on non-orientable surfaces. Equivalently, Bouchet conjectured that every bidirected graph with a nowhere-zero Z\mathbb{Z}-flow has a nowhere-zero 6-flow. Our main result establishes that every such graph has a nowhere-zero 12-flow.Comment: 24 pages, 2 figure
    corecore