134,563 research outputs found

    Secure Wireless Communications Based on Compressive Sensing: A Survey

    Get PDF
    IEEE Compressive sensing (CS) has become a popular signal processing technique and has extensive applications in numerous fields such as wireless communications, image processing, magnetic resonance imaging, remote sensing imaging, and anology to information conversion, since it can realize simultaneous sampling and compression. In the information security field, secure CS has received much attention due to the fact that CS can be regarded as a cryptosystem to attain simultaneous sampling, compression and encryption when maintaining the secret measurement matrix. Considering that there are increasing works focusing on secure wireless communications based on CS in recent years, we produce a detailed review for the state-of-the-art in this paper. To be specific, the survey proceeds with two phases. The first phase reviews the security aspects of CS according to different types of random measurement matrices such as Gaussian matrix, circulant matrix, and other special random matrices, which establishes theoretical foundations for applications in secure wireless communications. The second phase reviews the applications of secure CS depending on communication scenarios such as wireless wiretap channel, wireless sensor network, internet of things, crowdsensing, smart grid, and wireless body area networks. Finally, some concluding remarks are given

    New multivariate central limit theorems in linear structural and functional error-in-variables models

    Full text link
    This paper deals simultaneously with linear structural and functional error-in-variables models (SEIVM and FEIVM), revisiting in this context generalized and modified least squares estimators of the slope and intercept, and some methods of moments estimators of unknown variances of the measurement errors. New joint central limit theorems (CLT's) are established for these estimators in the SEIVM and FEIVM under some first time, so far the most general, respective conditions on the explanatory variables, and under the existence of four moments of the measurement errors. Moreover, due to them being in Studentized forms to begin with, the obtained CLT's are a priori nearly, or completely, data-based, and free of unknown parameters of the distribution of the errors and any parameters associated with the explanatory variables. In contrast, in related CLT's in the literature so far, the covariance matrices of the limiting normal distributions are, in general, complicated and depend on various, typically unknown parameters that are hard to estimate. In addition, the very forms of the CLT's in the present paper are universal for the SEIVM and FEIVM. This extends a previously known interplay between a SEIVM and a FEIVM. Moreover, though the particular methods and details of the proofs of the CLT's in the SEIVM and FEIVM that are established in this paper are quite different, a unified general scheme of these proofs is constructed for the two models herewith.Comment: Published at http://dx.doi.org/10.1214/07-EJS075 in the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Parallel Approximation Algorithm for Positive Semidefinite Programming

    Full text link
    Positive semidefinite programs are an important subclass of semidefinite programs in which all matrices involved in the specification of the problem are positive semidefinite and all scalars involved are non-negative. We present a parallel algorithm, which given an instance of a positive semidefinite program of size N and an approximation factor eps > 0, runs in (parallel) time poly(1/eps) \cdot polylog(N), using poly(N) processors, and outputs a value which is within multiplicative factor of (1 + eps) to the optimal. Our result generalizes analogous result of Luby and Nisan [1993] for positive linear programs and our algorithm is inspired by their algorithm.Comment: 16 page
    corecore