82,139 research outputs found

    Denial of FTC Rulemaking Powers

    Get PDF

    Higher Spin Gravity Amplitudes From Zero-form Charges

    Full text link
    We examine zero-form charges in Vasiliev's four-dimensional bosonic higher spin gravities. These are classical observables given by integrals over noncommutative twistor space of adjoint combinations of the zero-form master fields, including insertions of delta functions in the deformed oscillators serving as gauge invariant regulators. The regularized charges admit perturbative expansions in terms of multi-linear functionals in the Weyl zero-form, which are Bose symmetric and higher spin invariant by construction, and that can be interpreted as basic building blocks for higher spin gravity amplitudes. We compute two- and three-point functions by attaching external legs given by unfolded bulk-to-boundary propagators, and identify the result with the two- and three-current correlation functions in theories of free conformal scalars and fermions in three dimensions. Modulo assumptions on the structure of the sub-leading corrections, and relying on the generalized Hamiltonian off-shell formulation, we are thus led to propose an expression for the free energy as a sum of suitably normalized zero-form chargesComment: V2: Typos corrected, references added, footnote and note added, discussion section improve

    Two Electrons in a Quantum Dot: A Unified Approach

    Full text link
    Low-lying energy levels of two interacting electrons confined in a two-dimensional parabolic quantum dot in the presence of an external magnetic field have been revised within the frame of a novel model. The present formalism, which gives closed algebraic solutions for the specific values of magnetic field and spatial confinement length, enables us to see explicitly individual effects of the electron correlation.Comment: 14 page

    The Luttinger model: its role in the RG-theory of one dimensional many body Fermi systems

    Full text link
    The Luttinger model was introduced to illustrate the theory of Tomonaga via an exactly soluble model. It became soon the subject of great interest also on the part of Mathematical Physics and a key to the investigations of the mathematical properties of Condensed Matter Physics. This paper reviews aspects of the above developments relevant for renormalization group methods.Comment: Plain Te
    corecore