1 research outputs found

    Synthesis of communicating decentralized supervisors for discrete-event systems with application to communication protocol synthesis

    Get PDF
    A Discrete-Event Systems (DES) may be viewed as a dynamic system with a discrete state space and a discrete state-transition structure with an event-driven nature, which makes it different from the systems described by differential or difference equations. Given the desired behavior of a DES as a specification, decentralized supervisory control theory seeks to design for a (distributed) DES, consisting of a number of (geographically distant) sites, a set of supervisors, one for each site, such that the behavior of the DES always remains within the specification. If the specification is not coobservable, these supervisors need to communicate amongst each other. This thesis proposes a mathematical framework to formally model and synthesize such communicating decentralized supervisors. The framework provides a decentralized representation of the DES's centralized supervisor and captures its observational and control-related information as mappings, which are called updating and guard functions, respectively. This leads to a polynomial dynamical system, which serves to model the required communication and synthesize its rules. The systematic synthesis, obtained through this approach, characterizes the class of distributed control problems which are solvable only with communication, comes up with a finer partition of it, and addresses practical issues. The thesis ends with the application of the theoretical results to the modeling and synthesis of a communication protoco
    corecore