4,130 research outputs found

    Inter-individual variation of the human epigenome & applications

    Get PDF

    Genome editing of candidate genes related to disease resistance to Piscirickettsia salmonis in Atlantic salmon (Salmo salar)

    Get PDF
    Salmon Rickettsial Syndrome (SRS), caused by the bacterium Piscirickettsia salmonis, is one of the most severe infectious diseases threatening the Chilean Atlantic salmon industry. Among the leading causes of mortality and morbidity, SRS significantly affect the seawater production stage, where biomass losses account for a major economic impact. One potential avenue to tackle SRS is the improvement of host resistance using selective breeding. To accomplish this, insight into the genetic basis of host response, identifying specific genes and pathways involved in this response, and comprehending the potential function these genes have in infection overcome, is valuable. Consequently, this study aims to identify functional genes and pathways that contribute to genetic host resistance to SRS and investigate the effect of CRISPR/Cas9 knockout on these genes during P.salmonis infection. Candidate genes were identified from a previous in vivo large-scale infection study of 2,265 Atlantic salmon smolts injected with P.salmonis and genotyped. These data were used to estimate SRS resistance breeding values. Head-kidney and liver samples for RNA-Seq were obtained from 48 individuals at pre-infection, 3 and 9 days post-infection, and tests of differential expression between pre- and post-infection, and between high and low resistance breeding values were performed. From the thousands of differentially expressed genes, enrichment of several KEGG pathways related to immune response such as bacterial internalisation, intracellular trafficking, apoptosis, and inflammasome was observed in both tissues in fish relatively more resistant to infection. A literature review of the biological function of genes in these pathways highlighted the most suitable candidates for functional studies. Subsequently, five genes related to SRS resistance were successfully edited using a CRISPR/Cas9 Ribonucleoprotein (RNP) transfection to knockout these genes in an Atlantic salmon cell line (SHK-1). An in vitro infection challenge model of the knockout and control cell lines with P.salmonis was performed to elucidate the impact on cytopathic damage, cell viability and bacterial load during infection. These findings suggest a promising avenue of research into the genetic architecture of host resistance to SRS

    An agent-based approach for energy-efficient sensor networks in logistics

    Get PDF
    As part of the fourth industrial revolution, logistics processes are augmented with connected information systems to improve their reliability and sustainability. Above all, customers can analyse process data obtained from the networked logistics operations to reduce costs and increase margins. The logistics of managing liquid goods is particularly challenging due to the strict transport temperature requirements involving monitoring via sensors attached to containers. However, these sensors transmit much redundant information that, at times, does not provide additional value to the customer, while consuming the limited energy stored in the sensor batteries. This paper aims to explore and study alternative approaches for location tracking and state monitoring in the context of liquid goods logistics. This problem is addressed by using a combination of data-driven sensing and agent-based modelling techniques. The simulation results show that the longest life span of batteries is achieved when most sensors are put into sleep mode yielding an increase of ×21.7 and ×3.7 for two typical routing scenarios. However, to allow for situations in which high quality sensor data is required to make decisions, agents need to be made aware of the life cycle phase of individual containers. Key contributions include (1) an agent-based approach for modelling the dynamics of liquid goods logistics to enable monitoring and detect inefficiencies (2) the development and analysis of three sensor usage strategies for reducing the energy consumption, and (3) an evaluation of the trade-offs between energy consumption and location tracking precision for timely decision making in resource constrained monitoring systems

    Dissecting postharvest chilling injuries in pome and stone fruit through integrated omics

    Get PDF
    Lowering the storage temperature is an effective method to extend the postharvest and shelf life of fruits. Nevertheless, this technique often leads to physiological disorders, commonly known as chilling injuries. Apples and pears are susceptible to chilling injuries, among which superficial scald is the most economically relevant. Superficial scald is due to necrotic lesions of the first layers of hypodermis manifested through skin browning. In peaches and nectarines, chilling injuries are characterized by internal symptoms, such as mealiness. Fruits with these aesthetic or compositional/structural defects are not suitable for fresh consumption. Genetic variation is a key factor in determining fruit susceptibility to chilling injuries; however, physiological, or technical aspects such as harvest maturity and storage conditions also play a role. Multi-omics approaches have been used to provide an integrated explanation of chilling injury development. Metabolomics in pome fruits specifically targets the identification of ethylene, phenols, lipids, and oxidation products. Genomics and transcriptomics have revealed interesting connections with metabolomic datasets, pinpointing specific genes linked to cold stress, wax synthesis, farnesene metabolism, and the metabolic pathways of ascorbate and glutathione. When applied to Prunus species, these cutting-edge approaches have uncovered that the development of mealiness symptoms is linked to ethylene signaling, cell wall synthesis, lipid metabolism, cold stress genes, and increased DNA methylation levels. Emphasizing the findings from multi-omics studies, this review reports how the integration of omics datasets can provide new insights into understanding of chilling injury development. This new information is essential for successfully creating more resilient fruit varieties and developing novel postharvest strategies

    Metabolic pathways and therapeutic opportunities in the chronic lymphocytic leukemia microenvironment

    Get PDF
    This study delves into the intricate metabolic dynamics of chronic lymphocytic leukaemia (CLL) within the tumour microenvironment (TME) of lymphoid tissues. Unlike the traditional focus on quiescent CLL cells in peripheral blood, this study aims to unravel complex metabolic behaviour of CLL cells in the lymph node compartment, where CLL cells divide and become activated.Utilizing state-of-the-art methods, such as metabolomics, transcriptomics, and fluxomics, we found that interaction of CLL cells with adjacent cells within the TME results in significant metabolic alterations. Particularly, we discovered a shift towards glutamine dependency of CLL cells upon TME-related stimulation. Such metabolic alterations impact sensitivity of these leukaemia cells to treatments, especially to specific apoptosis inducing agents, such as venetoclax, which has become the cornerstone of CLL treatment. The study demonstrates that by targeting specific metabolic pathways, such as the electron transport chain, CLL cells can be sensitized to venetoclax treatment. This finding can be exploited for the development of innovative strategies in order to overcome drug resistance.Additionally, the thesis explores the effects of mitochondrial glutamine transporters and the broader implications of lipid metabolism alterations in CLL. It also probes into the role of key genetic factors, such as p53, in the metabolic regulation of CLL and other B cell malignancies, unveiling new insights into potential therapeutic vulnerabilities.Conclusively, this research not only fills critical gaps in our understanding of CLL metabolism within the TME but also paves the way for novel, targeted therapeutic interventions. By linking metabolic alterations to treatment responses, it sets the stage for more effective, personalized approaches in the management of CLL

    Breeding Melons for Resistance to Viral and Fungal Diseases. Exploiting the Multi-Resistant Accession TGR-1551

    Full text link
    [ES] Las cucurbitáceas son la segunda familia de hortícolas más importante a nivel mundial, solo por detrás de las solanáceas. Tradicionalmente su cultivo se ha llevado a cabo en las zonas templadas del planeta. Sin embargo, las condiciones de cambio climático, el comercio internacional y los modelos de agricultura intensiva favorecen la aparición de nuevas virosis y enfermedades fúngicas en zonas donde antes no estaban presentes. En este sentido, resulta esencial el monitoreo periódico de las principales zonas productoras, para así poder detectar los virus y hongos emergentes en cada territorio y adaptar los programas de mejora a los objetivos específicos de cada zona. En el caso concreto del melón (Cucumis melo) existe una gran variabilidad intraespecífica que puede servir como fuente de alelos de resistencia frente a estos patógenos. Sin embargo, las fuentes de resistencia suelen encontrarse dentro del germoplasma silvestre, normalmente originario de África o Asia, y en el que el nivel de domesticación es reducido. Para un mejor aprovechamiento de las accesiones resistentes, resulta necesario un estudio del control genético de los caracteres de interés, que permita localizar las regiones asociadas a la resistencia y diseñar marcadores moleculares asociadas a las mismas. Esto facilita los programas de mejora orientados a la introgresión de las resistencias manteniendo el fondo genético de las variedades de interés En la presente tesis doctoral, durante las campañas de verano de 2019 y 2020, se ha llevado a cabo un estudio de la incidencia y diversidad genética de 9 especies virales potencialmente limitantes para el cultivo de cucurbitáceas en el sur este español. Se ha podido observar que los virus transmitidos por pulgones son prevalentes frente a los transmitidos por mosca blanca. Dentro del primer grupo destacó la presencia de watermelon mosaic virus (WMV), cucurbits aphid borne yellows virus (CABYV) y cucumber mosaic virus (CMV), ya que fueron detectados en todas las zonas y cultivos estudiados, apareciendo frecuentemente en infecciones mixtas. Moroccan watermelon mosaic virus (MWMV) y tomato leaf curl New Delhi virus (ToLCNDV) también fueron detectados en algunas zonas, pero con porcentajes de infección más bajos y normalmente en infecciones mixtas con WMV. Los análisis filogenéticos de los distintos aislados encontrados ha permitido la identificación de 7 nuevos perfiles moleculares de WMV y de aislados recombinantes de CMV, lo que es consistente con los resultados obtenidos en otros países y pone de manifiesto la gran variabilidad de estos patógenos. Las accesiones silvestres de melón recogidas en distintos bancos de germoplasma son un valioso recurso para los programas de mejora genética frente a estreses bióticos. La accesión africana TGR-1551 ha sido descrita previamente como resistente a WMV, CYSDV (cucurbit yellow stunting disorder virus), CABYV y el hongo Podosphaera xanthii (Px, razas 1, 2 y 5) agente causal del oídio en melón. Además, es tolerante a la mosca blanca (Bemisia tabaci) y portadora del gen Vat (virus aphid transmission), el cual limita la transmisión de virus por pulgón. Por lo tanto, esta accesión constituye una buena fuente de alelos de resistencia y, al poder utilizar un único parental donante, su uso acortaría los programas de mejora. En el marco de la presente tesis doctoral, mediante el desarrollo de poblaciones segregantes de mapeo y el aprovechamiento de las tecnologías de genotipado masivo se han podido cartografiar los QTLs asociados a la resistencia a CYSDV derivados de esta entrada. En el caso de la resistencia a CYSDV, se han detectado dos QTL en el cromosoma 5. El primero de ellos es de efecto mayor y herencia dominante, estando asociado al desarrollo de síntomas. El segundo QTL, de efecto menor y también de herencia dominante, no confiere resistencia por sí mismo y está asociado a la carga viral durante la infección. Siguiendo una estrategia similar se han podido cartografiar y estrecha[CA] Les cucurbitàcies són la segona família d'hortícoles més important a nivell mundial, només per darrere de les solanàcies. Tradicionalment el seu cultiu s'ha dut a terme a les zones temperades del planeta. No obstant això, les condicions de canvi climàtic, el comerç internacional i els models d'agricultura intensiva afavoreixen l'aparició de noves virosis i malalties fúngiques en zones on abans no estaven presents. En aquest sentit, resulta essencial el monitoratge periòdic de les principals zones productores, per a d'aquesta manera, poder detectar els virus i fongs emergents en cada territori i adaptar els programes de millora als objectius específics de cada zona. En el cas concret del meló (Cucumis melo) existeix una gran variabilitat intraespecífica que pot servir com a font d'al·lels de resistència enfront d'aquests patògens. No obstant això, les fonts de resistència solen trobar-se dins del germoplasma silvestre, normalment originari d'Àfrica o Àsia, i en el qual el nivell de domesticació és reduït. Per a un millor aprofitament de les accessions resistents, resulta necessari un estudi del control genètic dels caràcters d'interés, que permeta localitzar les regions associades a la resistència i dissenyar marcadors moleculars associats a aquestes. Això facilita els programes de millora orientats a la introgressió de les resistències mantenint el fons genètic de les varietats d'interés. En la present tesi doctoral, durant les campanyes d'estiu de 2019 i 2020, s'ha dut a terme un estudi de la incidència i diversitat genètica de nou espècies virals potencialment limitants per al cultiu de cucurbitàcies en el sud-est espanyol. S'ha pogut observar que els virus transmesos per pugons són prevalents enfront dels transmesos per mosca blanca. Dins del primer grup va destacar la presència de watermelon mosaic virus (WMV), cucurbits aphid born yellows virus (CABYV) i cucumber mosaic virus (CMV), ja que van ser detectats en totes les zones i cultius estudiats, apareixent sovint en infeccions mixtes. Moroccan watermelon mosaic virus (MWMV) i tomatoleaf curl New Delhi virus (ToLCNDV) també van ser detectats en algunes zones, però amb percentatges d'infecció més baixos i normalment en infeccions mixtes amb WMV. Les anàlisis filogenètiques dels diferents aïllats trobats ha permés la identificació de set nous perfils moleculars de WMV i d'aïllats recombinants de CMV, la qual cosa és consistent amb els resultats obtinguts en altres països i posa de manifest la gran variabilitat d'aquests patògens. Les accessions silvestres de meló recollides en diferents bancs de germoplasma són un valuós recurs per als programes de millora genètica enfront d'estressos biòtics. L'accessió africana *TGR-1551 ha sigut descrita prèviament com a resistent a WMV, CYSDV (cucurbit yellow stunting disorder virus), CABYV i el fong Podosphaera xanthii (Px, races 1, 2 i 5) agent causal de l'oïdi en meló. A més, és tolerant a la mosca blanca (Bemisia tabaci) i portadora del gen Vat (virus aphid transmission), el qual limita la transmissió de virus per pugó. Per tant, aquesta accessió constitueix una bona font d'al·lels de resistència i, en poder utilitzar un únic parental donant, el seu ús acurtaria els programes de millora. En el marc de la present tesi doctoral, mitjançant el desenvolupament de poblacions segregants de mapatge i l'aprofitament de les tecnologies de genotipat massiu s'ha pogut cartografiar els QTLs associats a la resistència a CYSDV derivats d'aquesta entrada. En el cas de la resistència a CYSDV, s'han detectat dues QTL en el cromosoma cinc. El primer d'ells és d'efecte major i herència dominant, estant associat al desenvolupament de símptomes. El segon QTL, d'efecte menor i també d'herència dominant, no confereix resistència per si mateix i està associat a la càrrega viral durant la infecció. Seguint una estratègia similar s'han pogut cartografiar i estrényer els *QTLs de resistència enfront de Px. En aquest cas es tracta d'una epistàsia dominant-re[EN] Cucurbits represent the second most important horticultural family worldwide, second only the Solanaceae family. Traditionally, their cultivation has been concentrated in temperate regions across the globe. However, climate change conditions, international trade, and intensive agricultural practices are contributing to the emergence of new viral and fungal diseases in regions where they were previously absent. In this regard, it is crucial to regularly monitor major production areas to detect emerging viruses and fungi specific to each region. This monitoring allows for the adaptation of breeding programs to the unique goals of each area. In the case of melon (Cucumis melo), it exists significant intraspecific variability that can serve as a source of resistance alleles against these pathogens. However, sources of resistance are often found within wild germplasm, typically originating from Africa or Asia, and characterized by limited domestication. To better utilize these resistant accessions, a study of the genetic control of desirable traits is necessary. This study aims to locate regions associated with resistance and design molecular markers linked to these regions. Such an approach streamlines breeding programs focused on introgressing resistance traits while preserving the genetic background of the desired varieties. During the summer campaigns of 2019 and 2020, this doctoral thesis conducted a study on the incidence and genetic diversity of nine viral species potentially affecting cucurbit cultivation in southeastern Spain. It was observed that viruses transmitted by aphids were more prevalent than those transmitted by whiteflies. Within the first group, the presence of watermelon mosaic virus (WMV), cucurbits aphid borne yellows virus (CABYV), and cucumber mosaic virus (CMV) stood out, as they were detected in all the studied areas and crops, often in mixed infections. Moroccan watermelon mosaic virus (MWMV) and tomato leaf curl New Delhi virus (ToLCNDV) were also detected in some areas but with lower infection percentages, typically in mixed infections with WMV. Phylogenetic analyses of the found isolates have identified seven new molecular profiles of WMV and recombinant CMV isolates, which is consistent with results from other countries, highlighting the extensive variability of these pathogens. Wild melon accessions preserved in various germplasm banks represent a valuable resource for breeding programs against biotic stresses. The African accession TGR-1551 has been previously described as resistant to WMV, CYSDV (cucurbit yellow stunting disorder virus), CABYV, and the fungus Podosphaera xanthii (Px, races 1, 2, and 5), which causes powdery mildew in melons. Additionally, it is tolerant to whiteflies (Bemisia tabaci) and carries the Vat gene (Virus Aphid Transmission), limiting virus transmission by aphids. Therefore, this accession constitutes as an excellent source of resistance alleles, and its use, as a single donor parent, can expedite breeding programs. Within the scope of this doctoral thesis, through the development of segregating mapping populations and the utilization of high-throughput genotyping technologies, the QTLs associated with CYSDV resistance from this accession have been mapped. In the case of CYSDV resistance, two QTLs have been detected on chromosome 5. The first of these, with major effects and dominant inheritance, is associated with symptom development. The second QTL, with minor effects and also dominant inheritance, does not confer resistance by itself and is linked to viral load during infection. A similar strategy was employed to map and narrow down the QTLs for resistance against Px. In this case, it involves a dominant-recessive epistasis, with the recessive gene located on chromosome 12 and the dominant gene on chromosome 5, specifically in the same region where the major CYSDV resistance QTL is located. Regarding resistance against WMV, previous studies conducted by the researchThis research was funded by the Spanish Ministerio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033), grant number PID2020-116055RB (C21 and C22), and by the Conselleria d’Educació, Investigació, Cultura i Esports de la Generalitat Valenciana, grant number PROMETEO/2021/072 (to promote excellence groups, cofinanced with FEDER funds). M.L. is a recipient of a predoctoral fellowship (PRE2018-083466) of the Spanish Ministerio de Ciencia, Innovación y Universidades co-financed with FSE funds.López Martín, M. (2023). Breeding Melons for Resistance to Viral and Fungal Diseases. Exploiting the Multi-Resistant Accession TGR-1551 [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/20206

    Identifying alterations in adipose tissue-derived islet GPCR peptide ligand mRNAs in obesity: implications for islet function

    Get PDF
    In addition to acting as an energy reservoir, white adipose tissue is a vital endocrine organ involved in the modulation of cellular function and the maintenance of metabolic homeostasis through the synthesis and secretion of peptides, known as adipokines. It is known that some of these secretory peptides play important regulatory roles in glycaemic control by acting directly on islet β-cells or on insulin-sensitive tissues. Excess adiposity causes alterations in the circulating levels of some adipokines which, depending on their mode of action, can have pro-inflammatory, pro-diabetic or anti-inflammatory, anti-diabetic properties. Some adipokines that are known to act at β-cells have actions that are transduced by binding to G protein- coupled receptors (GPCRs). This large family of receptors represents ~35% of all current drug targets for the treatment of a wide range of diseases, including type 2 diabetes (T2D). Islets express ~300 GPCRs, yet only one islet GPCR is currently directly targeted for T2D treatment. This deficit represents a therapeutic gap that could be filled by the identification of adipose tissue-derived islet GPCR peptide ligands that increase insulin secretion and overall β-cell function. Thus, by defining their mechanisms of action, there is potential for the development of new pharmacotherapies for T2D. Therefore, this thesis describes experiments which aimed to compare the expression profiles of adipose tissue-derived islet GPCR peptide ligand mRNAs under lean and obese conditions, and to characterise the functional effects of a selected candidate of interest on islet cells. Visceral fat depots were retrieved from high-fat diet-induced and genetically obese mouse models, and from human participants. Fat pads were either processed as whole tissue, or mature adipocyte cells were separated from the stromal vascular fraction (SVF) which contains several other cell populations, including preadipocytes and macrophages. The expression levels of 155 islet GPCR peptide ligand mRNAs in whole adipose tissue or in isolated mature adipocytes were quantified using optimised RNA extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) protocols. Comparisons between lean and obese states in mice models and humans revealed significant modifications in the expression levels of several adipokine mRNAs. As expected, mRNAs encoding the positive control genes, Lep and AdipoQ were quantifiable, with the expression of Lep mRNA increasing and that of AdipoQ mRNA decreasing in obesity. Expression of Ccl4 mRNA, encoding chemokine (C-C motif) ligand 4, was significantly upregulated in whole adipose tissue across all models of obesity compared to their lean counterparts. This coincided with elevated circulating Ccl4 peptide levels. This increase was not replicated in isolated mature adipocytes, indicating that the source of upregulated Ccl4 expression in obesity was the SVF of adipose tissue. Based on this significant increase in Ccl4 mRNA expression within visceral fat and its undetermined effects on β-cell function, Ccl4 was selected for further investigation in MIN6 β-cells and mouse islets. PRESTO-Tango β-arrestin reporter assays were performed to determine which GPCRs were activated by exogenous Ccl4. Experiments using HTLA cells expressing a protease-tagged β- arrestin and transfected with GPCR plasmids of interest indicated that 100ng/mL Ccl4 significantly activated Cxcr1 and Cxcr5, but it was not an agonist at the previously identified Ccl4-target GPCRs Ccr1, Ccr2, Ccr5, Ccr9 and Ackr2. RNA extraction and RT-qPCR experiments using MIN6 β-cells and primary islets from lean mice revealed the expression of Cxcr5 mRNA in mouse islets, but it was absent in MIN6 β-cells. The remaining putative Ccl4 receptors (Ccr1, Ccr2, Ccr5, Ccr9, Cxcr1 and Ackr2) were either absent or present at trace levels in mouse islets and MIN6 β-cells. Recombinant mouse Ccl4 protein was used for functional experiments at concentrations of 5, 10, 50 and 100ng/mL, based on previous reports of biological activities at these concentrations. Trypan blue exclusion testing was initially performed to assess the effect of exogenous Ccl4 on MIN6 β-cell viability and these experiments indicated that all concentrations (5-100ng/mL) were well-tolerated. Since β-cells have a low basal rate of apoptosis, cell death was induced by exposure to the saturated free fatty acid, palmitate, or by a cocktail of pro-inflammatory cytokines (interleukin-1β, tumour necrosis factor-α and interferon-γ). In MIN6 β-cells, Ccl4 demonstrated concentration-dependent protective effects against palmitate-induced and cytokine-induced apoptosis. Conversely, while palmitate and cytokines also increased apoptosis of mouse islets, Ccl4 did not protect islets from either inducer. Quantification of bromodeoxyuridine (BrdU) incorporation into β-cell DNA indicated that Ccl4 caused a concentration-dependent reduction in proliferation of MIN6 β-cells in response to 10% fetal bovine serum (FBS). In contrast, immunohistochemical quantification of Ki67-positive mouse islet β-cells showed no differences in β-cell proliferation between control- and Ccl4-treated islets. Whilst the number of β-cells and δ-cells were unaffected, α- cells were significantly depleted by Ccl4 treatment. Exogenous Ccl4 had no effect on nutrient- stimulated insulin secretion from both MIN6 β-cells and primary mouse islets. The 3T3-L1 preadipocyte cell line was used to assess potential Ccl4-mediated paracrine and/or autocrine signalling within adipose tissue. Ccl4 did not alter the mRNA expression of Pparγ, a master regulator of adipocyte differentiation, but did significantly downregulate the mRNA expression of the crucial adipogenic gene, adiponectin. Oil Red O staining and Western blotting were performed to assess lipid accumulation, and insulin and lipolytic signalling, respectively, and these experiments indicated that the observed Ccl4-induced decrease in adiponectin expression failed to correlate with any changes in adipocyte function. In summary, these data demonstrated anti-apoptotic and anti-proliferative actions of the adipokine, Ccl4, on MIN6 β-cells that were not replicated in mouse islets. The absence of any anti-apoptotic, insulin secretory and/or pro-proliferative effects of Ccl4 in islet β-cells suggests that it is unlikely to play a role in regulating β-cell function via crosstalk between adipose tissue and islets. The divergent functional effects highlight that whilst MIN6 cells are a useful primary β-cell surrogate for some studies, primary islets should always be used to confirm physiological relevance. On the other hand, significant α-cell depletion following Ccl4 treatment suggests a cell-specific function within the islets. Furthermore, Ccl4 impaired adiponectin mRNA expression in adipocytes, although, how adipocyte function is affected as a result requires further investigation. Collectively, these data have contributed increased understanding of the role of obesity in modifying the expression of adipose tissue-derived islet GPCR peptide ligands

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore