1,564 research outputs found

    A Secure Cloud Computing Model based on Data Classification

    Get PDF
    AbstractIn cloud computing systems, the data is stored on remote servers accessed through the internet. The increasing volume of personal and vital data, brings up more focus on storing the data securely. Data can include financial transactions, important documents, and multimedia contents. Implementing cloud computing services may reduce local storage reliance in addition to reducing operational and maintenance costs. However, users still have major security and privacy concerns about their outsourced data because of possible unauthorized access within the service providers. The existing solutions encrypt all data using the same key size without taking into consideration the confidentiality level of data which in turn will increase the cost and processing time. In this research, we propose a secure cloud computing model based on data classification. The proposed cloud model minimizes the overhead and processing time needed to secure data through using different security mechanisms with variable key sizes to provide the appropriate confidentiality level required for the data. The proposed model was tested with different encryption algorithms, and the simulation results showed the reliability and efficiency of the proposed framework

    Outsmarting Network Security with SDN Teleportation

    Full text link
    Software-defined networking is considered a promising new paradigm, enabling more reliable and formally verifiable communication networks. However, this paper shows that the separation of the control plane from the data plane, which lies at the heart of Software-Defined Networks (SDNs), introduces a new vulnerability which we call \emph{teleportation}. An attacker (e.g., a malicious switch in the data plane or a host connected to the network) can use teleportation to transmit information via the control plane and bypass critical network functions in the data plane (e.g., a firewall), and to violate security policies as well as logical and even physical separations. This paper characterizes the design space for teleportation attacks theoretically, and then identifies four different teleportation techniques. We demonstrate and discuss how these techniques can be exploited for different attacks (e.g., exfiltrating confidential data at high rates), and also initiate the discussion of possible countermeasures. Generally, and given today's trend toward more intent-based networking, we believe that our findings are relevant beyond the use cases considered in this paper.Comment: Accepted in EuroSP'1

    Enhancing Data Security for Cloud Computing Applications through Distributed Blockchain-based SDN Architecture in IoT Networks

    Full text link
    Blockchain (BC) and Software Defined Networking (SDN) are some of the most prominent emerging technologies in recent research. These technologies provide security, integrity, as well as confidentiality in their respective applications. Cloud computing has also been a popular comprehensive technology for several years. Confidential information is often shared with the cloud infrastructure to give customers access to remote resources, such as computation and storage operations. However, cloud computing also presents substantial security threats, issues, and challenges. Therefore, to overcome these difficulties, we propose integrating Blockchain and SDN in the cloud computing platform. In this research, we introduce the architecture to better secure clouds. Moreover, we leverage a distributed Blockchain approach to convey security, confidentiality, privacy, integrity, adaptability, and scalability in the proposed architecture. BC provides a distributed or decentralized and efficient environment for users. Also, we present an SDN approach to improving the reliability, stability, and load balancing capabilities of the cloud infrastructure. Finally, we provide an experimental evaluation of the performance of our SDN and BC-based implementation using different parameters, also monitoring some attacks in the system and proving its efficacy.Comment: 12 Pages 16 Figures 3 Table

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    A decentralized framework for cross administrative domain data sharing

    Get PDF
    Federation of messaging and storage platforms located in remote datacenters is an essential functionality to share data among geographically distributed platforms. When systems are administered by the same owner data replication reduces data access latency bringing data closer to applications and enables fault tolerance to face disaster recovery of an entire location. When storage platforms are administered by different owners data replication across different administrative domains is essential for enterprise application data integration. Contents and services managed by different software platforms need to be integrated to provide richer contents and services. Clients may need to share subsets of data in order to enable collaborative analysis and service integration. Platforms usually include proprietary federation functionalities and specific APIs to let external software and platforms access their internal data. These different techniques may not be applicable to all environments and networks due to security and technological restrictions. Moreover the federation of dispersed nodes under a decentralized administration scheme is still a research issue. This thesis is a contribution along this research direction as it introduces and describes a framework, called \u201cWideGroups\u201d, directed towards the creation and the management of an automatic federation and integration of widely dispersed platform nodes. It is based on groups to exchange messages among distributed applications located in different remote datacenters. Groups are created and managed using client side programmatic configuration without touching servers. WideGroups enables the extension of the software platform services to nodes belonging to different administrative domains in a wide area network environment. It lets different nodes form ad-hoc overlay networks on-the-fly depending on message destinations located in distinct administrative domains. It supports multiple dynamic overlay networks based on message groups, dynamic discovery of nodes and automatic setup of overlay networks among nodes with no server-side configuration. I designed and implemented platform connectors to integrate the framework as the federation module of Message Oriented Middleware and Key Value Store platforms, which are among the most widespread paradigms supporting data sharing in distributed systems

    SoK: Confidential Quartet - Comparison of Platforms for Virtualization-Based Confidential Computing

    Get PDF
    Confidential computing allows processing sensitive workloads in securely isolated spaces. Following earlier adop- tion of process-based approaches to isolation, vendors are now enabling hardware and firmware support for virtualization-based confidential computing on several server platforms. Due to variations in the technology stack, threat model, implemen-tation and functionality, the available solutions offer somewhat different capabilities, trade-offs and security guarantees. In this paper we review, compare and contextualize four virtualization-based confidential computing technologies for enterprise server platforms - AMD SEV, ARM CCA, IBM PEF and Intel TDX
    • …
    corecore