17,603 research outputs found

    Worldline algorithms for Casimir configurations

    Get PDF
    We present improved worldline numerical algorithms for high-precision calculations of Casimir interaction energies induced by scalar-field fluctuations with Dirichlet boundary conditions for various Casimir geometries. Significant reduction of numerical cost is gained by exploiting the symmetries of the worldline ensemble in combination with those of the configurations. This facilitates high-precision calculations on standard PCs or small clusters. We illustrate our strategies using the experimentally most relevant sphere-plate and cylinder-plate configuration. We compute Casimir curvature effects for a wide parameter range, revealing the tight validity bounds of the commonly used proximity force approximation (PFA). We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA. Revisiting the parallel-plate configuration, we find a mapping between the D-dimensional Casimir energy and properties of a random-chain polymer ensemble.Comment: 23 pages, 9 figure

    Universality of subleading corrections for self-avoiding walks in presence of one dimensional defects

    Get PDF
    We study three-dimensional self-avoiding walks in presence of a one-dimensional excluded region. We show the appearance of a universal sub-leading exponent which is independent of the particular shape and symmetries of the excluded region. A classical argument provides the estimate: Δ=2ν−1≈0.175(1)\Delta = 2 \nu - 1 \approx 0.175(1). The numerical simulation gives Δ=0.18(2)\Delta = 0.18(2).Comment: 29 pages, latex2

    Polynomial-Time Amoeba Neighborhood Membership and Faster Localized Solving

    Full text link
    We derive efficient algorithms for coarse approximation of algebraic hypersurfaces, useful for estimating the distance between an input polynomial zero set and a given query point. Our methods work best on sparse polynomials of high degree (in any number of variables) but are nevertheless completely general. The underlying ideas, which we take the time to describe in an elementary way, come from tropical geometry. We thus reduce a hard algebraic problem to high-precision linear optimization, proving new upper and lower complexity estimates along the way.Comment: 15 pages, 9 figures. Submitted to a conference proceeding

    Applied computational geometry: Towards robust solutions of basic problems

    Get PDF
    AbstractGeometric computations, like all numerical procedures, are extremely prone to roundoff error. However, virtually none of the numerical analysis literature directly applies to geometric calculations. Even for line intersection, the most basic geometric operation, there is no robust and efficient algorithm. Compounding the difficulties, many geometric algorithms perform iterations of calculations reusing previously computed data. In this paper, we explore some of the main issues in geometric computations and the methods that have been proposed to handle roundoff errors. In particular, we focus on one method and apply it to a general iterative intersection problem. Our initial results seem promising and will hopefully lead to robust solutions for more complex problems of applied computational geometry

    The Lagrangian description of aperiodic flows: a case study of the Kuroshio Current

    Get PDF
    This article reviews several recently developed Lagrangian tools and shows how their combined use succeeds in obtaining a detailed description of purely advective transport events in general aperiodic flows. In particular, because of the climate impact of ocean transport processes, we illustrate a 2D application on altimeter data sets over the area of the Kuroshio Current, although the proposed techniques are general and applicable to arbitrary time dependent aperiodic flows. The first challenge for describing transport in aperiodical time dependent flows is obtaining a representation of the phase portrait where the most relevant dynamical features may be identified. This representation is accomplished by using global Lagrangian descriptors that when applied for instance to the altimeter data sets retrieve over the ocean surface a phase portrait where the geometry of interconnected dynamical systems is visible. The phase portrait picture is essential because it evinces which transport routes are acting on the whole flow. Once these routes are roughly recognised it is possible to complete a detailed description by the direct computation of the finite time stable and unstable manifolds of special hyperbolic trajectories that act as organising centres of the flow.Comment: 40 pages, 24 figure

    A Probabilistic Analysis of the Power of Arithmetic Filters

    Get PDF
    The assumption of real-number arithmetic, which is at the basis of conventional geometric algorithms, has been seriously challenged in recent years, since digital computers do not exhibit such capability. A geometric predicate usually consists of evaluating the sign of some algebraic expression. In most cases, rounded computations yield a reliable result, but sometimes rounded arithmetic introduces errors which may invalidate the algorithms. The rounded arithmetic may produce an incorrect result only if the exact absolute value of the algebraic expression is smaller than some (small) varepsilon, which represents the largest error that may arise in the evaluation of the expression. The threshold varepsilon depends on the structure of the expression and on the adopted computer arithmetic, assuming that the input operands are error-free. A pair (arithmetic engine,threshold) is an "arithmetic filter". In this paper we develop a general technique for assessing the efficacy of an arithmetic filter. The analysis consists of evaluating both the threshold and the probability of failure of the filter. To exemplify the approach, under the assumption that the input points be chosen randomly in a unit ball or unit cube with uniform density, we analyze the two important predicates "which-side" and "insphere". We show that the probability that the absolute values of the corresponding determinants be no larger than some positive value V, with emphasis on small V, is Theta(V) for the which-side predicate, while for the insphere predicate it is Theta(V^(2/3)) in dimension 1, O(sqrt(V)) in dimension 2, and O(sqrt(V) ln(1/V)) in higher dimensions. Constants are small, and are given in the paper.Comment: 22 pages 7 figures Results for in sphere test inproved in cs.CG/990702

    Optimal fault-tolerant placement of relay nodes in a mission critical wireless network

    Get PDF
    The operations of many critical infrastructures (e.g., airports) heavily depend on proper functioning of the radio communication network supporting operations. As a result, such a communication network is indeed a mission-critical communication network that needs adequate protection from external electromagnetic interferences. This is usually done through radiogoniometers. Basically, by using at least three suitably deployed radiogoniometers and a gateway gathering information from them, sources of electromagnetic emissions that are not supposed to be present in the monitored area can be localised. Typically, relay nodes are used to connect radiogoniometers to the gateway. As a result, some degree of fault-tolerance for the network of relay nodes is essential in order to offer a reliable monitoring. On the other hand, deployment of relay nodes is typically quite expensive. As a result, we have two conflicting requirements: minimise costs while guaranteeing a given fault-tolerance. In this paper address the problem of computing a deployment for relay nodes that minimises the relay node network cost while at the same time guaranteeing proper working of the network even when some of the relay nodes (up to a given maximum number) become faulty (fault-tolerance). We show that the above problem can be formulated as a Mixed Integer Linear Programming (MILP) as well as a Pseudo-Boolean Satisfiability (PB-SAT) optimisation problem and present experimental results com- paring the two approaches on realistic scenarios
    • …
    corecore