14,373 research outputs found

    Reliable Broadcast with Respect to Topology Knowledge

    Get PDF
    We study the Reliable Broadcast problem in incomplete networks against a Byzantine adversary. We examine the problem under the locally bounded adversary model of Koo (2004) and the general adversary model of Hirt and Maurer (1997) and explore the tradeoff between the level of topology knowledge and the solvability of the problem. We refine the local pair-cut technique of Pelc and Peleg (2005) in order to obtain impossibility results for every level of topology knowledge and any type of corruption distribution. On the positive side we devise protocols that match the obtained bounds and thus, exactly characterize the classes of graphs in which Reliable Broadcast is possible. Among others, we show that Koo\u27s Certified Propagation Algorithm (CPA) is unique against locally bounded adversaries in ad hoc networks, that is, it can tolerate as many local corruptions as any other non-faulty algorithm; this settles an open question posed by Pelc and Peleg. We also provide an adaptation of CPA against general adversaries and show its uniqueness in this case too. To the best of our knowledge this is the first optimal algorithm for Reliable Broadcast in generic topology ad hoc networks against general adversaries

    Multi-hop Byzantine reliable broadcast with honest dealer made practical

    Get PDF
    We revisit Byzantine tolerant reliable broadcast with honest dealer algorithms in multi-hop networks. To tolerate Byzantine faulty nodes arbitrarily spread over the network, previous solutions require a factorial number of messages to be sent over the network if the messages are not authenticated (e.g., digital signatures are not available). We propose modifications that preserve the safety and liveness properties of the original unauthenticated protocols, while highly decreasing their observed message complexity when simulated on several classes of graph topologies, potentially opening to their employment

    Lower Bounds for Structuring Unreliable Radio Networks

    Full text link
    In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now includes unreliable links controlled by an adversary. We begin by proving that a natural geographic constraint on the network topology is required to solve these problems efficiently (i.e., in time polylogarthmic in the network size). We then prove the importance of the assumption that nodes are provided advance knowledge of their reliable neighbors (i.e, neighbors connected by reliable links). Combined, these results answer an open question by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC 2011] are optimal with respect to their dual graph model assumptions. They also provide insight into what properties of an unreliable network enable efficient local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of the International Symposium on Distributed Computing (DISC

    On Byzantine Broadcast in Loosely Connected Networks

    Full text link
    We consider the problem of reliably broadcasting information in a multihop asynchronous network that is subject to Byzantine failures. Most existing approaches give conditions for perfect reliable broadcast (all correct nodes deliver the authentic message and nothing else), but they require a highly connected network. An approach giving only probabilistic guarantees (correct nodes deliver the authentic message with high probability) was recently proposed for loosely connected networks, such as grids and tori. Yet, the proposed solution requires a specific initialization (that includes global knowledge) of each node, which may be difficult or impossible to guarantee in self-organizing networks - for instance, a wireless sensor network, especially if they are prone to Byzantine failures. In this paper, we propose a new protocol offering guarantees for loosely connected networks that does not require such global knowledge dependent initialization. In more details, we give a methodology to determine whether a set of nodes will always deliver the authentic message, in any execution. Then, we give conditions for perfect reliable broadcast in a torus network. Finally, we provide experimental evaluation for our solution, and determine the number of randomly distributed Byzantine failures than can be tolerated, for a given correct broadcast probability.Comment: 1

    Parameterizable Byzantine Broadcast in Loosely Connected Networks

    Full text link
    We consider the problem of reliably broadcasting information in a multihop asynchronous network, despite the presence of Byzantine failures: some nodes are malicious and behave arbitrarly. We focus on non-cryptographic solutions. Most existing approaches give conditions for perfect reliable broadcast (all correct nodes deliver the good information), but require a highly connected network. A probabilistic approach was recently proposed for loosely connected networks: the Byzantine failures are randomly distributed, and the correct nodes deliver the good information with high probability. A first solution require the nodes to initially know their position on the network, which may be difficult or impossible in self-organizing or dynamic networks. A second solution relaxed this hypothesis but has much weaker Byzantine tolerance guarantees. In this paper, we propose a parameterizable broadcast protocol that does not require nodes to have any knowledge about the network. We give a deterministic technique to compute a set of nodes that always deliver authentic information, for a given set of Byzantine failures. Then, we use this technique to experimentally evaluate our protocol, and show that it significantely outperforms previous solutions with the same hypotheses. Important disclaimer: these results have NOT yet been published in an international conference or journal. This is just a technical report presenting intermediary and incomplete results. A generalized version of these results may be under submission
    • …
    corecore