1 research outputs found

    Investigation of wide bandgap semiconductors for room temperature spintronic, and photovoltaic applications

    Get PDF
    Suitability of wide bandgap semiconductors for room temperature (RT) spintronic, and photovoltaic applications is investigated. Spin properties of metal-organic chemical vapor deposition (MOCVD) – grown gadolinium-doped gallium nitride (GaGdN) are studied and underlying mechanism is identified. GaGdN exhibits Anomalous Hall Effect at room temperature if it contains oxygen or carbon atoms but shows Ordinary Hall Effect in their absence. The mechanism for spin and ferromagnetism in GaGdN is a combination of intrinsic, metallic conduction, and carrier-hopping mechanisms, and is activated by oxygen or carbon centers at interstitial or similar sites. A carrier-related mechanism in MOCVD-grown GaGdN at room temperature makes it a suitable candidate for spintronic applications. Zinc oxide (ZnO) doped with transition metals such as nickel and manganese and grown by MOCVD is investigated, and bandgap tunability is studied. A bandgap reduction with transition metal doping is seen in ZnO with dilute doping of nickel or manganese. Transition metals could introduce energy states in ZnO that result in a bandgap reduction and could be tuned and controlled by growth conditions and post-growth processing such as annealing, for spintronic and photovoltaic applications”--Abstract, page iii
    corecore