653 research outputs found

    Remaining life prediction of rolling bearing based on PCA and improved logistic regression model

    Get PDF
    Rolling bearing reliability assessment and remaining useful life (RUL) prediction are crucially important for improving the reliability of mechanical equipment, reducing the probability of sudden failure, and saving on maintenance costs. Novel prediction method is proposed based on PCA and Improved Logistic Regression Model (ILRM) to solve the problem that the model is difficult to establish and the remaining life of rolling bearing is difficult to estimate. Time domain, frequency domain, and time-frequency domain feature extraction methods are employed in this study to extract the original features from the vibration signals. Next, the relative feature value is used to reduce the influence of random vibration and individual differences between bearings. PCA is run based on the original extracted features and high dimensional and superfluous information to merge the original features and reduce the dimension, where typically sensitive features are extracted. The ILRM is then used to build a model that reflects the deterioration trend and eliminates the impact of fluctuations, ultimately yielding information regarding the rolling bearing’s reliability and the remaining life. The proposed method is shown to accurately predict the lifespan of rolling bearings, thus exhibiting practical value in the engineering field

    Remaining useful life (RUL) prediction of bearing by using regression model and principal component analysis (PCA) technique

    Get PDF
    A wind turbine works under variable load and environmental conditions because of which failure rate has been on the rise. Failure of a gearbox, an integral part of producing wind energy, contributes to 80 % of the total downtime for the wind turbine. For ensuring better utilization of the wind turbines, Fault prognosis and condition monitoring of bearings are of utmost importance as it helps to reduce the downtime by early detection of faults which further increases the power output. In this paper, vibration signals produced and machine learning approach to determine the Remaining Useful Life (RUL) for a degraded bearing is studied. The methodology includes statistical feature extraction analysis with regression models. Further the feature selection is done using Principal Component Analysis (PCA) technique which produces training and testing sets which acts as an input parameter for regression models such as Support Vector Regressor (SVR) and Random Forest (RF). Weibull Hazard Rate Function is used for calculating the RUL of the bearing. Results This study shows the potential application of regression model as an effective tool for degradation performance prediction of bearing

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms

    Cost optimization of maintenance scheduling for wind turbines with aging components

    Get PDF
    A major part of the wind turbine operation cost is resulted from the maintenance of its components. This thesis deals with the theory, algorithms, and applications concerning minimization of the maintenance cost of wind power turbines, using mathematical modelling to find the optimal schedules of preventive maintenance activities for multi-component systems.\ua0 \ua0 The main contributions of this thesis are covered by the four papers appended. The unifying goal of these papers is to produce new optimization models resulting in effective and fast algorithms for preventive maintenance time schedules. The features of the multi-component systems addressed in our project are: aging components, long-term, and short-term planning, planning for a wind power farm, end of the lifetime of the wind farm, maintenance contracts, and condition monitoring data.\ua0 \ua0 For the long-term maintenance planning problem, this thesis contains an optimization framework that recognizes different phases of the wind turbine lifetime. For short-term planning problem, this thesis contains two modeling frameworks, which both focus on the planning of the next preventive maintenance activities. Our virtual experiments show that the developed optimization models adopt realistic assumptions and can be accurately solved in seconds. One of these two frameworks is further extended so that available condition monitoring data can be incorporated for regular updates of the components\u27 hazard functions. In collaboration with the Swedish Wind Power Technology Center at Chalmers and its member companies, we test this method with real-world wind farm data. Our case studies demonstrate that this framework may result in remarkable savings due to the smart scheduling of preventive maintenance activities by monitoring the ages of the components as well as operation data of the wind turbines. \ua0 \ua0 We believe that in the future, the proposed optimization model for short-term planning based on the component age and condition monitoring data can be used as a key module in a maintenance scheduling app

    Multidimensional prognostics for rotating machinery: A review

    Get PDF
    open access articleDetermining prognosis for rotating machinery could potentially reduce maintenance costs and improve safety and avail- ability. Complex rotating machines are usually equipped with multiple sensors, which enable the development of multidi- mensional prognostic models. By considering the possible synergy among different sensor signals, multivariate models may provide more accurate prognosis than those using single-source information. Consequently, numerous research papers focusing on the theoretical considerations and practical implementations of multivariate prognostic models have been published in the last decade. However, only a limited number of review papers have been written on the subject. This article focuses on multidimensional prognostic models that have been applied to predict the failures of rotating machinery with multiple sensors. The theory and basic functioning of these techniques, their relative merits and draw- backs and how these models have been used to predict the remnant life of a machine are discussed in detail. Furthermore, this article summarizes the rotating machines to which these models have been applied and discusses future research challenges. The authors also provide seven evaluation criteria that can be used to compare the reviewed techniques. By reviewing the models reported in the literature, this article provides a guide for researchers considering prognosis options for multi-sensor rotating equipment

    A Study of Proportional Hazards Models: Its Applications in Prognostics

    Get PDF
    Prognostics and health management technology is proposed to satisfy the requirements of equipment autonomous maintenance and diagnosis, which is a new technique relying on condition-based maintenance. It mainly includes condition monitoring, fault diagnostics, life prediction, maintenance decision-making, and spare parts management. As one of the most commonly used reliability statistical modeling methods, proportional hazards model (PHM) is widely used in the field of prognostics, because it can effectively combine equipment service age and condition monitoring information to obtain more accurate condition prediction results. In the past decades, PHM-based methods have been widely employed, especially since the twenty-first century. However, after the rapid development of PHM, there is no systematic review and summary particularly focused on it. Therefore, this chapter comprehensively summarizes the research progress of PHM in prognostics
    • …
    corecore