4,980 research outputs found

    Relevant Deconvolution For Acoustic Source Estimation

    Get PDF
    We describe a robust deconvolution algorithm for simultaneously estimating an acoustic source signal and convolutive filters associated with the acoustic room impulse responses from a pair of microphone signals. In contrast to conventional blind deconvolution techniques which rely upon a knowledge of the statistics of the source signal, our algorithm exploits the nonnegativity and sparsity structure of room impulse responses. The algorithm is formulated as a quadratic optimization problem with respect to both the source signal and filter coefficients, and proceeds by iteratively solving the optimization in two alternating steps. In the H-step, the nonnegative filter coefficients are optimally estimated within a Bayesian framework using a relevant set of regularization parameters. In the S-step, the source signal is estimated without any prior assumption on its statistical distribution. The resulting estimates converge to a relevant solution exhibiting appropriate sparseness in the filters. Simulation results indicate that the algorithm is able to precisely recover both the source signal and filter coefficients, even in the presence of large ambient noise

    Nonlinear time-warping made simple: a step-by-step tutorial on underwater acoustic modal separation with a single hydrophone

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Thode, A., Wright, D., & Chapman, R. Nonlinear time-warping made simple: a step-by-step tutorial on underwater acoustic modal separation with a single hydrophone. The Journal of the Acoustical Society of America, 147(3), (2020): 1897, doi:10.1121/10.0000937.Classical ocean acoustic experiments involve the use of synchronized arrays of sensors. However, the need to cover large areas and/or the use of small robotic platforms has evoked interest in single-hydrophone processing methods for localizing a source or characterizing the propagation environment. One such processing method is “warping,” a non-linear, physics-based signal processing tool dedicated to decomposing multipath features of low-frequency transient signals (frequency f  1 km). Since its introduction to the underwater acoustics community in 2010, warping has been adopted in the ocean acoustics literature, mostly as a pre-processing method for single receiver geoacoustic inversion. Warping also has potential applications in other specialties, including bioacoustics; however, the technique can be daunting to many potential users unfamiliar with its intricacies. Consequently, this tutorial article covers basic warping theory, presents simulation examples, and provides practical experimental strategies. Accompanying supplementary material provides matlab code and simulated and experimental datasets for easy implementation of warping on both impulsive and frequency-modulated signals from both biotic and man-made sources. This combined material should provide interested readers with user-friendly resources for implementing warping methods into their own research.This work was supported by the Office of Naval Research (Task Force Ocean, project N00014-19-1-2627) and by the North Pacific Research Board (project 1810). Original warping developments were supported by the French Delegation Generale de l'Armement

    Seismic Ray Impedance Inversion

    Get PDF
    This thesis investigates a prestack seismic inversion scheme implemented in the ray parameter domain. Conventionally, most prestack seismic inversion methods are performed in the incidence angle domain. However, inversion using the concept of ray impedance, as it honours ray path variation following the elastic parameter variation according to Snell’s law, shows the capacity to discriminate different lithologies if compared to conventional elastic impedance inversion. The procedure starts with data transformation into the ray-parameter domain and then implements the ray impedance inversion along constant ray-parameter profiles. With different constant-ray-parameter profiles, mixed-phase wavelets are initially estimated based on the high-order statistics of the data and further refined after a proper well-to-seismic tie. With the estimated wavelets ready, a Cauchy inversion method is used to invert for seismic reflectivity sequences, aiming at recovering seismic reflectivity sequences for blocky impedance inversion. The impedance inversion from reflectivity sequences adopts a standard generalised linear inversion scheme, whose results are utilised to identify rock properties and facilitate quantitative interpretation. It has also been demonstrated that we can further invert elastic parameters from ray impedance values, without eliminating an extra density term or introducing a Gardner’s relation to absorb this term. Ray impedance inversion is extended to P-S converted waves by introducing the definition of converted-wave ray impedance. This quantity shows some advantages in connecting prestack converted wave data with well logs, if compared with the shearwave elastic impedance derived from the Aki and Richards approximation to the Zoeppritz equations. An analysis of P-P and P-S wave data under the framework of ray impedance is conducted through a real multicomponent dataset, which can reduce the uncertainty in lithology identification.Inversion is the key method in generating those examples throughout the entire thesis as we believe it can render robust solutions to geophysical problems. Apart from the reflectivity sequence, ray impedance and elastic parameter inversion mentioned above, inversion methods are also adopted in transforming the prestack data from the offset domain to the ray-parameter domain, mixed-phase wavelet estimation, as well as the registration of P-P and P-S waves for the joint analysis. The ray impedance inversion methods are successfully applied to different types of datasets. In each individual step to achieving the ray impedance inversion, advantages, disadvantages as well as limitations of the algorithms adopted are detailed. As a conclusion, the ray impedance related analyses demonstrated in this thesis are highly competent compared with the classical elastic impedance methods and the author would like to recommend it for a wider application

    Statistical properties of acoustic emission signals from metal cutting processes

    Full text link
    Acoustic Emission (AE) data from single point turning machining are analysed in this paper in order to gain a greater insight of the signal statistical properties for Tool Condition Monitoring (TCM) applications. A statistical analysis of the time series data amplitude and root mean square (RMS) value at various tool wear levels are performed, �nding that ageing features can be revealed in all cases from the observed experimental histograms. In particular, AE data amplitudes are shown to be distributed with a power-law behaviour above a cross-over value. An analytic model for the RMS values probability density function (pdf) is obtained resorting to the Jaynes' maximum entropy principle (MEp); novel technique of constraining the modelling function under few fractional moments, instead of a greater amount of ordinary moments, leads to well-tailored functions for experimental histograms.Comment: 16 pages, 7 figure

    Think Outside the Color Box: Probabilistic Target Selection and the SDSS-XDQSO Quasar Targeting Catalog

    Full text link
    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 <~ z <~ 3) where the stellar contamination is significant. We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method to estimate the underlying density. We convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This approach results in a targeting algorithm that is more principled, more efficient, and faster than other similar methods. We apply the algorithm to derive low-redshift (z < 2.2), medium-redshift (2.2 <= z 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg^2 of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available

    Study of the charge profile of thermally poled electrets

    Get PDF
    The charge profile of thermally poled electrets has been studied using two different methods, laser induced pressure pulse (LIPP) and pulsed electroacoustic (PEA), to gain insight into the mechanisms that are activated and assess which is the most appropriate method to study the charge profile. Disc--shaped PET samples have been conventionally poled to activate both the alpha and the rho relaxation and, right after, partially discharged up to a temperature Tpd. In this way, samples with a different combination of dipolar and space charge polarization have been obtained. Both LIPP and PEA reveal asymmetric profiles for Tpd below the glass transition temperature, that progressively become antisymmetric for higher temperatures. The shape and evolution of the charge profiles can be explained assuming injection of negative carriers from the anode that enhances the trapping of positive carriers near this electrode. It can be observed that PEA is able to detect a wider variety of polarization mechanisms in the system while LIPP gives a simpler picture of the charge profile.Comment: 19 pages, 11 figure

    Post-WMAP Assessment of Infrared Cutoff in the Primordial Spectrum from Inflation

    Full text link
    The recent Cosmic Microwave Background (CMB) measurements indicate that there is power deficiency of the CMB anisotropies at large scales compared with the Λ\LambdaCDM model. We have investigated the possibility of explaining such effects by a class of primordial power spectra which have infrared cutoffs close to the horizon scale. The primordial power spectrum recovered by direct deconvolution of the observed CMB angular spectrum indicates that the data prefers a sharp infrared cutoff with a localized excess (bump) just above the cutoff. We have been motivated to assess plausible extensions of simplest inflationary scenarios which readily accommodate similar form of infrared cutoff. We carry out a complete Bayesian analysis of the parameter space using {\it Markov Chain Monte Carlo} technique with such a class of primordial power spectra. We show that primordial power spectrum that have features such as an infrared cutoff followed by a subsequent excess in power give better fit to the observed data compared to a nearly scale-invariant power law or power spectrum with just a monotonic infrared cutoff. However, there is substantial room for improvement in the match to data and calls for exploration of other mechanisms that may lead to infrared cutoff even closer to that recovered by direct deconvolution approach.Comment: Changes to match version accepted for publication in PR

    Second and third season QUaD CMB temperature and polarization power spectra

    Get PDF
    We report results from the second and third seasons of observation with the QUaD experiment. Angular power spectra of the Cosmic Microwave Background are derived for both temperature and polarization at both 100 GHz and 150 GHz, and as cross frequency spectra. All spectra are subjected to an extensive set of jackknife tests to probe for possible systematic contamination. For the implemented data cuts and processing technique such contamination is undetectable. We analyze the difference map formed between the 100 and 150 GHz bands and find no evidence of foreground contamination in polarization. The spectra are then combined to form a single set of results which are shown to be consistent with the prevailing LCDM model. The sensitivity of the polarization results is considerably better than that of any previous experiment -- for the first time multiple acoustic peaks are detected in the E-mode power spectrum at high significance.Comment: 24 pages, 23 figures, updated to reflect published versio
    • …
    corecore