10,153 research outputs found

    Relay-Assisted Free-Space Optical Communications

    Get PDF
    The atmospheric lightwave propagation is considerably influenced by the random variations in the refractive index of air pockets due to turbulence. This undesired effect significantly degrades the performance of free-space optical (FSO) communication systems. Interestingly, the severity of such random degradations is highly related to the range of atmospheric propagation. In this thesis, we introduce relay-assisted FSO communications as a very promising technique to combat the degradation effects of atmospheric turbulence. Considering different configurations of the relays, we quantify the outage behavior of the relay-assisted system and identify the optimum relaying scheme. We further optimize the performance of the relay-assisted FSO system subject to some power constraints and provide optimal power control strategies for different scenarios under consideration. Moreover, an application of FSO relaying technique in quantum communications is investigated. The results demonstrate impressive performance improvements for the proposed relay-assisted FSO systems with respect to the conventional direct transmission whether applied in a classical or a quantum communication channel

    Game-Theoretic Spectrum Trading in RF Relay-Assisted Free-Space Optical Communications

    Get PDF
    This work proposes a novel hybrid RF/FSO system based on a game theoretic spectrum trading process. It is assumed that no RF spectrum is preallocated to the FSO link and only when the link availability is severely impaired by the infrequent adverse weather conditions, i.e. fog, etc., the source can borrow a portion of licensed RF spectrum from one of the surrounding RF nodes. Using the leased spectrum, the source establishes a dual-hop RF/FSO hybrid link to maintain its throughout to the destination. The proposed system is considered to be both spectrum- and power-efficient. A market-equilibrium-based pricing process is proposed for the spectrum trading between the source and RF nodes. Through extensive performance analysis, it is demonstrated that the proposed scheme can significantly improve the average capacity of the system, especially when the surrounding RF nodes are with low traffic loads. In addition, the system benefits from involving more RF nodes into the spectrum trading process by means of diversity, particularly when the surrounding RF nodes have high probability of being in heavy traffic loads. Furthermore, the application of the proposed system in a realistic scenario is presented based on the weather statistics in the city of Edinburgh, UK. It is demonstrated that the proposed system can substantially enhance the link availability towards the carrier-class requirement
    corecore