2 research outputs found

    Physical-layer Network Coding in Two-Way Heterogeneous Cellular Networks with Power Imbalance

    Get PDF
    The growing demand for high-speed data, quality of service ( QoS) assurance, and energy efficiency has triggered the evolution of fourth-generation ( 4G) Long-Term Evolution-Advanced ( LTE-A) networks to fifth generation ( 5G) and beyond. Interference is still a major performance bottleneck. This paper studies the application of physical-layer network coding ( PNC), which is a technique that exploits interference, in heterogeneous cellular networks. In particular, we propose a rate-maximizing relay selection algorithm for a single cell with multiple relays assuming the decode-and-forward ( DF) strategy. With nodes transmitting at different powers, the proposed algorithm adapts the resource allocation according to the differing link rates, and we prove theoretically that the optimization problem is log-concave. The proposed technique is shown to perform significantly better than the widely studied selection-cooperation technique. We then undertake an experimental study-on a software radio platform-of the decoding performance of PNC with unbalanced signal-to-noise ratios ( SNRs) in the multiple-access transmissions. This problem is inherent in cellular networks, and it is shown that, with channel coding and decoders based on multiuser detection and successive interference cancellation, the performance is better with power imbalance. This paper paves the way for further research on multicell PNC, resource allocation, and the implementation of PNC with higher order modulations and advanced coding techniques.Toshiba Research Europe Ltd.; U.K. Research Council; General Research Funds [414812]; AoE [E-02/08]SCI(E)[email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
    corecore