2,520 research outputs found

    A Posteriori Error Control for the Binary Mumford-Shah Model

    Full text link
    The binary Mumford-Shah model is a widespread tool for image segmentation and can be considered as a basic model in shape optimization with a broad range of applications in computer vision, ranging from basic segmentation and labeling to object reconstruction. This paper presents robust a posteriori error estimates for a natural error quantity, namely the area of the non properly segmented region. To this end, a suitable strictly convex and non-constrained relaxation of the originally non-convex functional is investigated and Repin's functional approach for a posteriori error estimation is used to control the numerical error for the relaxed problem in the L2L^2-norm. In combination with a suitable cut out argument, a fully practical estimate for the area mismatch is derived. This estimate is incorporated in an adaptive meshing strategy. Two different adaptive primal-dual finite element schemes, and the most frequently used finite difference discretization are investigated and compared. Numerical experiments show qualitative and quantitative properties of the estimates and demonstrate their usefulness in practical applications.Comment: 18 pages, 7 figures, 1 tabl

    A Second Order TV-type Approach for Inpainting and Denoising Higher Dimensional Combined Cyclic and Vector Space Data

    Full text link
    In this paper we consider denoising and inpainting problems for higher dimensional combined cyclic and linear space valued data. These kind of data appear when dealing with nonlinear color spaces such as HSV, and they can be obtained by changing the space domain of, e.g., an optical flow field to polar coordinates. For such nonlinear data spaces, we develop algorithms for the solution of the corresponding second order total variation (TV) type problems for denoising, inpainting as well as the combination of both. We provide a convergence analysis and we apply the algorithms to concrete problems.Comment: revised submitted versio

    Second Order Differences of Cyclic Data and Applications in Variational Denoising

    Full text link
    In many image and signal processing applications, as interferometric synthetic aperture radar (SAR), electroencephalogram (EEG) data analysis or color image restoration in HSV or LCh spaces the data has its range on the one-dimensional sphere S1\mathbb S^1. Although the minimization of total variation (TV) regularized functionals is among the most popular methods for edge-preserving image restoration such methods were only very recently applied to cyclic structures. However, as for Euclidean data, TV regularized variational methods suffer from the so called staircasing effect. This effect can be avoided by involving higher order derivatives into the functional. This is the first paper which uses higher order differences of cyclic data in regularization terms of energy functionals for image restoration. We introduce absolute higher order differences for S1\mathbb S^1-valued data in a sound way which is independent of the chosen representation system on the circle. Our absolute cyclic first order difference is just the geodesic distance between points. Similar to the geodesic distances the absolute cyclic second order differences have only values in [0,{\pi}]. We update the cyclic variational TV approach by our new cyclic second order differences. To minimize the corresponding functional we apply a cyclic proximal point method which was recently successfully proposed for Hadamard manifolds. Choosing appropriate cycles this algorithm can be implemented in an efficient way. The main steps require the evaluation of proximal mappings of our cyclic differences for which we provide analytical expressions. Under certain conditions we prove the convergence of our algorithm. Various numerical examples with artificial as well as real-world data demonstrate the advantageous performance of our algorithm.Comment: 32 pages, 16 figures, shortened version of submitted manuscrip
    • …
    corecore