2,487 research outputs found

    Relativistic equation-of-motion coupled-cluster method for the electron attachment problem

    Full text link
    The article considers the successful implementation of relativistic equation-of-motion coupled cluster method for the electron attachment problem (EA-EOMCC) at the level of single- and double- excitation approximation. The implemented relativistic EA-EOMCC method is employed to calculate ionization potential values of alkali metal atoms (Li, Na, K, Rb, Cs, Fr) and the vertical electron affinity values of LiX (X = H, F, Cl, Br), NaY (Y = H, F, Cl) starting from their closed-shell configuration. Both four-component and exact two-component calculations are done for all the opted systems. Further, we have shown the effect of spin-orbit interaction considering the atomic systems. The results of our atomic calculations are compared with the values from the NIST database and the results are found to be very accurate (< 1 %).Comment: 26 Pages, 3 figures, 6 Tables. Comments are welcom

    Accounting for correlations with core electrons by means of the generalized relativistic effective core potentials: Atoms Hg and Pb and their compounds

    Full text link
    A way to account for correlations between the chemically active (valence) and innermore (core) electrons in the framework of the generalized relativistic effective core potential (GRECP) method is suggested. The "correlated" GRECP's (CGRECP's) are generated for the Hg and Pb atoms. Only correlations for the external twelve and four electrons of them, correspondingly, should be treated explicitly in the subsequent calculations with these CGRECP's whereas the innermore electrons are excluded from the calculations. Results of atomic calculations with the correlated and earlier GRECP versions are compared with the corresponding all-electron Dirac-Coulomb values. Calculations with the above GRECP's and CGRECP's are also carried out for the lowest-lying states of the HgH molecule and its cation and for the ground state of the PbO molecule as compared to earlier calculations and experimental data. The accuracy for the vibrational frequencies is increased up to an order of magnitude and the errors for the bond lengths (rotational constants) are decreased in about two times when the correlated GRECP's are applied instead of earlier GRECP versions employing the same innercore-outercore-valence partitioning.Comment: 12 pages, 4 tables, the text of the paper was significantly improve

    A New Approach To Relativistic Gaussian Basis Functions: Theory And Applications

    Full text link
    We present a new hybrid method to solve the relativistic Hartree-Fock-Roothan equations where the one- and two-electron radial integrals are evaluated numerically by defining the basis functions on a grid. This procedure reduces the computational costs in the evaluation of two-electron radial integrals. The orbitals generated by this method are employed to compute the ionization potentials, excitation energies and oscillator strengths of alkali-metal atoms and elements of group IIIA through second order many-body perturbation theor and other correlated theories.Comment: RevTex (15 pages) one figur
    corecore