3,747 research outputs found

    Optimal CUR Matrix Decompositions

    Full text link
    The CUR decomposition of an m×nm \times n matrix AA finds an m×cm \times c matrix CC with a subset of c<nc < n columns of A,A, together with an r×nr \times n matrix RR with a subset of r<mr < m rows of A,A, as well as a c×rc \times r low-rank matrix UU such that the matrix CURC U R approximates the matrix A,A, that is, ∣∣A−CUR∣∣F2≤(1+ϵ)∣∣A−Ak∣∣F2 || A - CUR ||_F^2 \le (1+\epsilon) || A - A_k||_F^2, where ∣∣.∣∣F||.||_F denotes the Frobenius norm and AkA_k is the best m×nm \times n matrix of rank kk constructed via the SVD. We present input-sparsity-time and deterministic algorithms for constructing such a CUR decomposition where c=O(k/ϵ)c=O(k/\epsilon) and r=O(k/ϵ)r=O(k/\epsilon) and rank(U)=k(U) = k. Up to constant factors, our algorithms are simultaneously optimal in c,r,c, r, and rank(U)(U).Comment: small revision in lemma 4.

    Efficient Algorithms for CUR and Interpolative Matrix Decompositions

    Full text link
    The manuscript describes efficient algorithms for the computation of the CUR and ID decompositions. The methods used are based on simple modifications to the classical truncated pivoted QR decomposition, which means that highly optimized library codes can be utilized for implementation. For certain applications, further acceleration can be attained by incorporating techniques based on randomized projections. Numerical experiments demonstrate advantageous performance compared to existing techniques for computing CUR factorizations

    Block CUR: Decomposing Matrices using Groups of Columns

    Full text link
    A common problem in large-scale data analysis is to approximate a matrix using a combination of specifically sampled rows and columns, known as CUR decomposition. Unfortunately, in many real-world environments, the ability to sample specific individual rows or columns of the matrix is limited by either system constraints or cost. In this paper, we consider matrix approximation by sampling predefined \emph{blocks} of columns (or rows) from the matrix. We present an algorithm for sampling useful column blocks and provide novel guarantees for the quality of the approximation. This algorithm has application in problems as diverse as biometric data analysis to distributed computing. We demonstrate the effectiveness of the proposed algorithms for computing the Block CUR decomposition of large matrices in a distributed setting with multiple nodes in a compute cluster, where such blocks correspond to columns (or rows) of the matrix stored on the same node, which can be retrieved with much less overhead than retrieving individual columns stored across different nodes. In the biometric setting, the rows correspond to different users and columns correspond to users' biometric reaction to external stimuli, {\em e.g.,}~watching video content, at a particular time instant. There is significant cost in acquiring each user's reaction to lengthy content so we sample a few important scenes to approximate the biometric response. An individual time sample in this use case cannot be queried in isolation due to the lack of context that caused that biometric reaction. Instead, collections of time segments ({\em i.e.,} blocks) must be presented to the user. The practical application of these algorithms is shown via experimental results using real-world user biometric data from a content testing environment.Comment: shorter version to appear in ECML-PKDD 201

    A DEIM Induced CUR Factorization

    Full text link
    We derive a CUR matrix factorization based on the Discrete Empirical Interpolation Method (DEIM). For a given matrix AA, such a factorization provides a low rank approximate decomposition of the form A≈CURA \approx C U R, where CC and RR are subsets of the columns and rows of AA, and UU is constructed to make CURCUR a good approximation. Given a low-rank singular value decomposition A≈VSWTA \approx V S W^T, the DEIM procedure uses VV and WW to select the columns and rows of AA that form CC and RR. Through an error analysis applicable to a general class of CUR factorizations, we show that the accuracy tracks the optimal approximation error within a factor that depends on the conditioning of submatrices of VV and WW. For large-scale problems, VV and WW can be approximated using an incremental QR algorithm that makes one pass through AA. Numerical examples illustrate the favorable performance of the DEIM-CUR method, compared to CUR approximations based on leverage scores
    • …
    corecore