32 research outputs found

    Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem

    Get PDF
    This paper proposes a new method for the K-armed dueling bandit problem, a variation on the regular K-armed bandit problem that offers only relative feedback about pairs of arms. Our approach extends the Upper Confidence Bound algorithm to the relative setting by using estimates of the pairwise probabilities to select a promising arm and applying Upper Confidence Bound with the winner as a benchmark. We prove a finite-time regret bound of order O(log t). In addition, our empirical results using real data from an information retrieval application show that it greatly outperforms the state of the art.Comment: 13 pages, 6 figure

    Factored Bandits

    Full text link
    We introduce the factored bandits model, which is a framework for learning with limited (bandit) feedback, where actions can be decomposed into a Cartesian product of atomic actions. Factored bandits incorporate rank-1 bandits as a special case, but significantly relax the assumptions on the form of the reward function. We provide an anytime algorithm for stochastic factored bandits and up to constants matching upper and lower regret bounds for the problem. Furthermore, we show that with a slight modification the proposed algorithm can be applied to utility based dueling bandits. We obtain an improvement in the additive terms of the regret bound compared to state of the art algorithms (the additive terms are dominating up to time horizons which are exponential in the number of arms)

    Preference-Based Monte Carlo Tree Search

    Full text link
    Monte Carlo tree search (MCTS) is a popular choice for solving sequential anytime problems. However, it depends on a numeric feedback signal, which can be difficult to define. Real-time MCTS is a variant which may only rarely encounter states with an explicit, extrinsic reward. To deal with such cases, the experimenter has to supply an additional numeric feedback signal in the form of a heuristic, which intrinsically guides the agent. Recent work has shown evidence that in different areas the underlying structure is ordinal and not numerical. Hence erroneous and biased heuristics are inevitable, especially in such domains. In this paper, we propose a MCTS variant which only depends on qualitative feedback, and therefore opens up new applications for MCTS. We also find indications that translating absolute into ordinal feedback may be beneficial. Using a puzzle domain, we show that our preference-based MCTS variant, wich only receives qualitative feedback, is able to reach a performance level comparable to a regular MCTS baseline, which obtains quantitative feedback.Comment: To be publishe

    Correlational Dueling Bandits with Application to Clinical Treatment in Large Decision Spaces

    Get PDF
    We consider sequential decision making under uncertainty, where the goal is to optimize over a large decision space using noisy comparative feedback. This problem can be formulated as a K-armed Dueling Bandits problem where K is the total number of decisions. When K is very large, existing dueling bandits algorithms suffer huge cumulative regret before converging on the optimal arm. This paper studies the dueling bandits problem with a large number of arms that exhibit a low-dimensional correlation structure. Our problem is motivated by a clinical decision making process in large decision space. We propose an efficient algorithm CorrDuel which optimizes the exploration/exploitation tradeoff in this large decision space of clinical treatments. More broadly, our approach can be applied to other sequential decision problems with large and structured decision spaces. We derive regret bounds, and evaluate performance in simulation experiments as well as on a live clinical trial of therapeutic spinal cord stimulation. To our knowledge, this marks the first time an online learning algorithm was applied towards spinal cord injury treatments. Our experimental results show the effectiveness and efficiency of our approach

    A Relative Exponential Weighing Algorithm for Adversarial Utility-based Dueling Bandits

    Get PDF
    We study the K-armed dueling bandit problem which is a variation of the classical Multi-Armed Bandit (MAB) problem in which the learner receives only relative feedback about the selected pairs of arms. We propose a new algorithm called Relative Exponential-weight algorithm for Exploration and Exploitation (REX3) to handle the adversarial utility-based formulation of this problem. This algorithm is a non-trivial extension of the Exponential-weight algorithm for Exploration and Exploitation (EXP3) algorithm. We prove a finite time expected regret upper bound of order O(sqrt(K ln(K)T)) for this algorithm and a general lower bound of order omega(sqrt(KT)). At the end, we provide experimental results using real data from information retrieval applications
    corecore