47,127 research outputs found

    Schemata as Building Blocks: Does Size Matter?

    Full text link
    We analyze the schema theorem and the building block hypothesis using a recently derived, exact schemata evolution equation. We derive a new schema theorem based on the concept of effective fitness showing that schemata of higher than average effective fitness receive an exponentially increasing number of trials over time. The building block hypothesis is a natural consequence in that the equation shows how fit schemata are constructed from fit sub-schemata. However, we show that generically there is no preference for short, low-order schemata. In the case where schema reconstruction is favoured over schema destruction large schemata tend to be favoured. As a corollary of the evolution equation we prove Geiringer's theorem. We give supporting numerical evidence for our claims in both non-epsitatic and epistatic landscapes.Comment: 17 pages, 10 postscript figure

    A simple two-module problem to exemplify building-block assembly under crossover

    No full text
    Theoretically and empirically it is clear that a genetic algorithm with crossover will outperform a genetic algorithm without crossover in some fitness landscapes, and vice versa in other landscapes. Despite an extensive literature on the subject, and recent proofs of a principled distinction in the abilities of crossover and non-crossover algorithms for a particular theoretical landscape, building general intuitions about when and why crossover performs well when it does is a different matter. In particular, the proposal that crossover might enable the assembly of good building-blocks has been difficult to verify despite many attempts at idealized building-block landscapes. Here we show the first example of a two-module problem that shows a principled advantage for cross-over. This allows us to understand building-block assembly under crossover quite straightforwardly and build intuition about more general landscape classes favoring crossover or disfavoring it

    A new genetic algorithm based on primal-dual chromosomes for royal road functions

    Get PDF
    Copyright @ 2001 University of LeicesterGenetic algorithms (GAs) have been broadly studied by a huge amount of researchers and there are many variations developed based on Holland’s simple genetic algorithm (SGA). Inspired by the idea of diploid genotype and dominance mechanisms that broadly exists in nature, we propose a primal-dual genetic algorithm (PDGA). PDGA operates on a pair of chromosomes that are primal-dual to each other in the sense of Hamming distance in genotype. We compare the performance of PDGA over SGA based on the Royal Road functions, which are specially designed for testing GA's performance. The experiment results show that PDGA outperforms SGA on the Royal Road functions for different performance measures.This work was supported by the University of Leicester Research Fund 2001 under Grant FP15004, UK
    • …
    corecore