3,453 research outputs found

    The Importance of the Wording of the ECB

    Get PDF
    This paper analyses the ECB communication, focusing in particular on its transparency dimension. We posit that if the ECB is transparent about its future policy decisions, then we should be able to forecast fairly well its future interest rate setting behaviour. We find that the predicting ability of the European monetary authority's words, is similar to the one implied by market-based measures of monetary policy expectations. Moreover, the ECB's wording provides complementary, rather than substitute, information with respect to economic and monetary variables.ECB communication, transparency, monetary policy forecast, empirical reaction function, Euribor rate curve

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Life settlement pricing with fuzzy parameters

    Full text link
    Existing literature asserts that the growth of life settlement (LS) markets, where they exist, is hampered by limited policyholder participation and suggests that to foster this growth appropriate pricing of LS transactions is crucial. The pricing of LSs relies on quantifying two key variables: the insured's mortality multiplier and the internal rate of return (IRR). However, the available information on these parameters is often scarce and vague. To address this issue, this article proposes a novel framework that models these variables using triangular fuzzy numbers (TFNs). This modelling approach aligns with how mortality multiplier and IRR data are typically provided in insurance markets and has the advantage of offering a natural interpretation for practitioners. When both the mortality multiplier and the IRR are represented as TFNs, the resulting LS price becomes a FN that no longer retains the triangular shape. Therefore, the paper introduces three alternative triangular approximations to simplify computations and enhance interpretation of the price. Additionally, six criteria are proposed to evaluate the effectiveness of each approximation method. These criteria go beyond the typical approach of assessing the approximation quality to the FN itself. They also consider the usability and comprehensibility for financial analysts with no prior knowledge of FNs. In summary, the framework presented in this paper represents a significant advancement in LS pricing. By incorporating TFNs, offering several triangular approximations and proposing goodness criteria of them, it addresses the challenges posed by limited and vague data, while also considering the practical needs of industry practitioners

    Insecticidal and repellant activities of Southeast Asia plants towards insect pests: a review

    Get PDF
    Crops are being damaged by several plant pests. Several strategies have been developed to restrict the damage of cultivated plants by using synthetic pesticides and repellants. However, the use to control these insects is highly discouraged because of their risks on humans. Therefore, several alternatives have been developed from plant extracts to protect crops from plant pests. Accordingly, this review focuses on outlining the insecticidal and repellant activities of Southeast Asia plants towards insect pests. Several extracts of plants from Southeast Asia were investigated to explore their insecticidal and repellant activities. Azadiracha indica (neem) and Piper species were highly considered for their insecticidal and repellant activities compared to other plants. This review also addressed the investigation on extracts of other plant species that were reported to exert insecticidal and repellant activities. Most of the conducted studies have been still in the primarily stage of investigation, lacking a focus on the insecticidal and repellant spectrum and the identification of the active constituents which are responsible for the insecticidal and repellant activity

    Towards Improved Homomorphic Encryption for Privacy-Preserving Deep Learning

    Get PDF
    Mención Internacional en el título de doctorDeep Learning (DL) has supposed a remarkable transformation for many fields, heralded by some as a new technological revolution. The advent of large scale models has increased the demands for data and computing platforms, for which cloud computing has become the go-to solution. However, the permeability of DL and cloud computing are reduced in privacy-enforcing areas that deal with sensitive data. These areas imperatively call for privacy-enhancing technologies that enable responsible, ethical, and privacy-compliant use of data in potentially hostile environments. To this end, the cryptography community has addressed these concerns with what is known as Privacy-Preserving Computation Techniques (PPCTs), a set of tools that enable privacy-enhancing protocols where cleartext access to information is no longer tenable. Of these techniques, Homomorphic Encryption (HE) stands out for its ability to perform operations over encrypted data without compromising data confidentiality or privacy. However, despite its promise, HE is still a relatively nascent solution with efficiency and usability limitations. Improving the efficiency of HE has been a longstanding challenge in the field of cryptography, and with improvements, the complexity of the techniques has increased, especially for non-experts. In this thesis, we address the problem of the complexity of HE when applied to DL. We begin by systematizing existing knowledge in the field through an in-depth analysis of state-of-the-art for privacy-preserving deep learning, identifying key trends, research gaps, and issues associated with current approaches. One such identified gap lies in the necessity for using vectorized algorithms with Packed Homomorphic Encryption (PaHE), a state-of-the-art technique to reduce the overhead of HE in complex areas. This thesis comprehensively analyzes existing algorithms and proposes new ones for using DL with PaHE, presenting a formal analysis and usage guidelines for their implementation. Parameter selection of HE schemes is another recurring challenge in the literature, given that it plays a critical role in determining not only the security of the instantiation but also the precision, performance, and degree of security of the scheme. To address this challenge, this thesis proposes a novel system combining fuzzy logic with linear programming tasks to produce secure parametrizations based on high-level user input arguments without requiring low-level knowledge of the underlying primitives. Finally, this thesis describes HEFactory, a symbolic execution compiler designed to streamline the process of producing HE code and integrating it with Python. HEFactory implements the previous proposals presented in this thesis in an easy-to-use tool. It provides a unique architecture that layers the challenges associated with HE and produces simplified operations interpretable by low-level HE libraries. HEFactory significantly reduces the overall complexity to code DL applications using HE, resulting in an 80% length reduction from expert-written code while maintaining equivalent accuracy and efficiency.El aprendizaje profundo ha supuesto una notable transformación para muchos campos que algunos han calificado como una nueva revolución tecnológica. La aparición de modelos masivos ha aumentado la demanda de datos y plataformas informáticas, para lo cual, la computación en la nube se ha convertido en la solución a la que recurrir. Sin embargo, la permeabilidad del aprendizaje profundo y la computación en la nube se reduce en los ámbitos de la privacidad que manejan con datos sensibles. Estas áreas exigen imperativamente el uso de tecnologías de mejora de la privacidad que permitan un uso responsable, ético y respetuoso con la privacidad de los datos en entornos potencialmente hostiles. Con este fin, la comunidad criptográfica ha abordado estas preocupaciones con las denominadas técnicas de la preservación de la privacidad en el cómputo, un conjunto de herramientas que permiten protocolos de mejora de la privacidad donde el acceso a la información en texto claro ya no es sostenible. Entre estas técnicas, el cifrado homomórfico destaca por su capacidad para realizar operaciones sobre datos cifrados sin comprometer la confidencialidad o privacidad de la información. Sin embargo, a pesar de lo prometedor de esta técnica, sigue siendo una solución relativamente incipiente con limitaciones de eficiencia y usabilidad. La mejora de la eficiencia del cifrado homomórfico en la criptografía ha sido todo un reto, y, con las mejoras, la complejidad de las técnicas ha aumentado, especialmente para los usuarios no expertos. En esta tesis, abordamos el problema de la complejidad del cifrado homomórfico cuando se aplica al aprendizaje profundo. Comenzamos sistematizando el conocimiento existente en el campo a través de un análisis exhaustivo del estado del arte para el aprendizaje profundo que preserva la privacidad, identificando las tendencias clave, las lagunas de investigación y los problemas asociados con los enfoques actuales. Una de las lagunas identificadas radica en el uso de algoritmos vectorizados con cifrado homomórfico empaquetado, que es una técnica del estado del arte que reduce el coste del cifrado homomórfico en áreas complejas. Esta tesis analiza exhaustivamente los algoritmos existentes y propone nuevos algoritmos para el uso de aprendizaje profundo utilizando cifrado homomórfico empaquetado, presentando un análisis formal y unas pautas de uso para su implementación. La selección de parámetros de los esquemas del cifrado homomórfico es otro reto recurrente en la literatura, dado que juega un papel crítico a la hora de determinar no sólo la seguridad de la instanciación, sino también la precisión, el rendimiento y el grado de seguridad del esquema. Para abordar este reto, esta tesis propone un sistema innovador que combina la lógica difusa con tareas de programación lineal para producir parametrizaciones seguras basadas en argumentos de entrada de alto nivel sin requerir conocimientos de bajo nivel de las primitivas subyacentes. Por último, esta tesis propone HEFactory, un compilador de ejecución simbólica diseñado para agilizar el proceso de producción de código de cifrado homomórfico e integrarlo con Python. HEFactory es la culminación de las propuestas presentadas en esta tesis, proporcionando una arquitectura única que estratifica los retos asociados con el cifrado homomórfico, produciendo operaciones simplificadas que pueden ser interpretadas por bibliotecas de bajo nivel. Este enfoque permite a HEFactory reducir significativamente la longitud total del código, lo que supone una reducción del 80% en la complejidad de programación de aplicaciones de aprendizaje profundo que usan cifrado homomórfico en comparación con el código escrito por expertos, manteniendo una precisión equivalente.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidenta: María Isabel González Vasco.- Secretario: David Arroyo Guardeño.- Vocal: Antonis Michala

    Improving Transparency in Approximate Fuzzy Modeling Using Multi-objective Immune-Inspired Optimisation

    Get PDF
    In this paper, an immune inspired multi-objective fuzzy modeling (IMOFM) mechanism is proposed specifically for high-dimensional regression problems. For such problems, prediction accuracy is often the paramount requirement. With such a requirement in mind, however, one should also put considerable efforts in eliciting models which are as transparent as possible, a ‘tricky’ exercise in itself. The proposed mechanism adopts a multi-stage modeling procedure and a variable length coding scheme to account for the enlarged search space due to simultaneous optimisation of the rule-base structure and its associated parameters. We claim here that IMOFM can account for both Singleton and Mamdani Fuzzy Rule-Based Systems (FRBS) due to the carefully chosen output membership functions, the inference scheme and the defuzzification method. The proposed modeling approach has been compared to other representatives using a benchmark problem, and was further applied to a high-dimensional problem, taken from the steel industry, which concerns the prediction of mechanical properties of hot rolled steels. Results confirm that IMOFM is capable of eliciting not only accurate but also transparent FRBSs from quantitative data

    Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms - A Review

    Get PDF
    In the wind energy industry, the power curve represents the relationship between the “wind speed” at the hub height and the corresponding “active power” to be generated. It is the most versatile condition indicator and of vital importance in several key applications, such as wind turbine selection, capacity factor estimation, wind energy assessment and forecasting, and condition monitoring, among others. Ensuring an effective implementation of the aforementioned applications mostly requires a modeling technique that best approximates the normal properties of an optimal wind turbines operation in a particular wind farm. This challenge has drawn the attention of wind farm operators and researchers towards the “state of the art” in wind energy technology. This paper provides an exhaustive and updated review on power curve based applications, the most common anomaly and fault types including their root-causes, along with data preprocessing and correction schemes (i.e., filtering, clustering, isolation, and others), and modeling techniques (i.e., parametric and non-parametric) which cover a wide range of algorithms. More than 100 references, for the most part selected from recently published journal articles, were carefully compiled to properly assess the past, present, and future research directions in this active domain

    Methods for fast and reliable clustering

    Get PDF
    corecore