8 research outputs found

    The Application of Statistical Relational Learning to a Database of Criminal and Terrorist Activity

    Full text link

    Design Principles for Robust Fraud Detection: The Case of Stock Market Manipulations

    Get PDF
    We address the challenge of building an automated fraud detection system with robust classifiers that mitigate countermeasures from fraudsters in the field of information-based securities fraud. Our work involves developing design principles for robust fraud detection systems and presenting corresponding design features. We adopt an instrumentalist perspective that relies on theory-based linguistic features and ensemble learning concepts as justificatory knowledge for building robust classifiers. We perform a naive evaluation that assesses the classifiers’ performance to identify suspicious stock recommendations, and a robustness evaluation with a simulation that demonstrates a response to fraudster countermeasures. The results indicate that the use of theory-based linguistic features and ensemble learning can significantly increase the robustness of classifiers and contribute to the effectiveness of robust fraud detection. We discuss implications for supervisory authorities, industry, and individual users

    Relational Data Pre-Processing Techniques for Improved Securities Fraud Detection

    No full text
    Commercial datasets are often large, relational, and dynamic. They contain many records of people, places, things, events and their interactions over time. Such datasets are rarely structured appropriately for knowledge discovery, and they often contain variables whose meanings change across different subsets of the data. We describe how these challenges were addressed in a collaborative analysis project undertaken by the University of Massachusetts Amherst and the National Association of Securities Dealers (NASD). We describe several methods for data preprocessing that we applied to transform a large, dynamic, and relational dataset describing nearly the entirety of the U.S. securities industry, and we show how these methods made the dataset suitable for learning statistical relational models. To better utilize social structure, we first applied known consolidation and link formation techniques to associate individuals with branch office locations. In addition, we developed an innovative technique to infer professional associations by exploiting dynamic employment histories. Finally, we applied normalization techniques to create a suitable class label that adjusts for spatial, temporal, and other heterogeneity within the data. We show how these pre-processing techniques combine to provide the necessary foundation for learning high-performing statistical models of fraudulent activity
    corecore