3 research outputs found

    Relational Reasoning using Prior Knowledge for Visual Captioning

    Full text link
    Exploiting relationships among objects has achieved remarkable progress in interpreting images or videos by natural language. Most existing methods resort to first detecting objects and their relationships, and then generating textual descriptions, which heavily depends on pre-trained detectors and leads to performance drop when facing problems of heavy occlusion, tiny-size objects and long-tail in object detection. In addition, the separate procedure of detecting and captioning results in semantic inconsistency between the pre-defined object/relation categories and the target lexical words. We exploit prior human commonsense knowledge for reasoning relationships between objects without any pre-trained detectors and reaching semantic coherency within one image or video in captioning. The prior knowledge (e.g., in the form of knowledge graph) provides commonsense semantic correlation and constraint between objects that are not explicit in the image and video, serving as useful guidance to build semantic graph for sentence generation. Particularly, we present a joint reasoning method that incorporates 1) commonsense reasoning for embedding image or video regions into semantic space to build semantic graph and 2) relational reasoning for encoding semantic graph to generate sentences. Extensive experiments on the MS-COCO image captioning benchmark and the MSVD video captioning benchmark validate the superiority of our method on leveraging prior commonsense knowledge to enhance relational reasoning for visual captioning

    Visual Relationship Forecasting in Videos

    Full text link
    Real-world scenarios often require the anticipation of object interactions in unknown future, which would assist the decision-making process of both humans and agents. To meet this challenge, we present a new task named Visual Relationship Forecasting (VRF) in videos to explore the prediction of visual relationships in a reasoning manner. Specifically, given a subject-object pair with H existing frames, VRF aims to predict their future interactions for the next T frames without visual evidence. To evaluate the VRF task, we introduce two video datasets named VRF-AG and VRF-VidOR, with a series of spatio-temporally localized visual relation annotations in a video. These two datasets densely annotate 13 and 35 visual relationships in 1923 and 13447 video clips, respectively. In addition, we present a novel Graph Convolutional Transformer (GCT) framework, which captures both object-level and frame-level dependencies by spatio-temporal Graph Convolution Network and Transformer. Experimental results on both VRF-AG and VRF-VidOR datasets demonstrate that GCT outperforms the state-of-the-art sequence modelling methods on visual relationship forecasting

    Learning Visual Relation Priors for Image-Text Matching and Image Captioning with Neural Scene Graph Generators

    Full text link
    Grounding language to visual relations is critical to various language-and-vision applications. In this work, we tackle two fundamental language-and-vision tasks: image-text matching and image captioning, and demonstrate that neural scene graph generators can learn effective visual relation features to facilitate grounding language to visual relations and subsequently improve the two end applications. By combining relation features with the state-of-the-art models, our experiments show significant improvement on the standard Flickr30K and MSCOCO benchmarks. Our experimental results and analysis show that relation features improve downstream models' capability of capturing visual relations in end vision-and-language applications. We also demonstrate the importance of learning scene graph generators with visually relevant relations to the effectiveness of relation features
    corecore