7,886 research outputs found

    The critical Z-invariant Ising model via dimers: the periodic case

    Full text link
    We study a large class of critical two-dimensional Ising models namely critical Z-invariant Ising models on periodic graphs, example of which are the classical square, triangular and honeycomb lattice at the critical temperature. Fisher introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model. We prove that the dimer characteristic polynomial is equal (up to a constant) to the critical Laplacian characteristic polynomial, and defines a Harnack curve of genus 0. We prove an explicit expression for the free energy, and for the Gibbs measure obtained as weak limit of Boltzmann measures.Comment: 35 pages, 8 figure

    On the asymptotics of dimers on tori

    Full text link
    We study asymptotics of the dimer model on large toric graphs. Let L\mathbb L be a weighted Z2\mathbb{Z}^2-periodic planar graph, and let Z2E\mathbb{Z}^2 E be a large-index sublattice of Z2\mathbb{Z}^2. For L\mathbb L bipartite we show that the dimer partition function on the quotient L/(Z2E)\mathbb{L}/(\mathbb{Z}^2 E) has the asymptotic expansion exp[Af0+fsc+o(1)]\exp[A f_0 + \text{fsc} + o(1)], where AA is the area of L/(Z2E)\mathbb{L}/(\mathbb{Z}^2 E), f0f_0 is the free energy density in the bulk, and fsc\text{fsc} is a finite-size correction term depending only on the conformal shape of the domain together with some parity-type information. Assuming a conjectural condition on the zero locus of the dimer characteristic polynomial, we show that an analogous expansion holds for L\mathbb{L} non-bipartite. The functional form of the finite-size correction differs between the two classes, but is universal within each class. Our calculations yield new information concerning the distribution of the number of loops winding around the torus in the associated double-dimer models.Comment: 48 pages, 18 figure

    On oriented graphs with minimal skew energy

    Full text link
    Let S(Gσ)S(G^\sigma) be the skew-adjacency matrix of an oriented graph GσG^\sigma. The skew energy of GσG^\sigma is defined as the sum of all singular values of its skew-adjacency matrix S(Gσ)S(G^\sigma). In this paper, we first deduce an integral formula for the skew energy of an oriented graph. Then we determine all oriented graphs with minimal skew energy among all connected oriented graphs on nn vertices with m (nm<2(n2))m \ (n\le m < 2(n-2)) arcs, which is an analogy to the conjecture for the energy of undirected graphs proposed by Caporossi {\it et al.} [G. Caporossi, D. Cvetkovicˊ\acute{c}, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984-996.]Comment: 15 pages. Actually, this paper was finished in June 2011. This is an updated versio
    corecore