2,775 research outputs found

    AltURI: a thin middleware for simulated robot vision applications

    Get PDF
    Fast software performance is often the focus when developing real-time vision-based control applications for robot simulators. In this paper we have developed a thin, high performance middleware for USARSim and other simulators designed for real-time vision-based control applications. It includes a fast image server providing images in OpenCV, Matlab or web formats and a simple command/sensor processor. The interface has been tested in USARSim with an Unmanned Aerial Vehicle using two control applications; landing using a reinforcement learning algorithm and altitude control using elementary motion detection. The middleware has been found to be fast enough to control the flying robot as well as very easy to set up and use

    Sim-to-Real Transfer of Robotic Control with Dynamics Randomization

    Full text link
    Simulations are attractive environments for training agents as they provide an abundant source of data and alleviate certain safety concerns during the training process. But the behaviours developed by agents in simulation are often specific to the characteristics of the simulator. Due to modeling error, strategies that are successful in simulation may not transfer to their real world counterparts. In this paper, we demonstrate a simple method to bridge this "reality gap". By randomizing the dynamics of the simulator during training, we are able to develop policies that are capable of adapting to very different dynamics, including ones that differ significantly from the dynamics on which the policies were trained. This adaptivity enables the policies to generalize to the dynamics of the real world without any training on the physical system. Our approach is demonstrated on an object pushing task using a robotic arm. Despite being trained exclusively in simulation, our policies are able to maintain a similar level of performance when deployed on a real robot, reliably moving an object to a desired location from random initial configurations. We explore the impact of various design decisions and show that the resulting policies are robust to significant calibration error

    Propagation Networks for Model-Based Control Under Partial Observation

    Full text link
    There has been an increasing interest in learning dynamics simulators for model-based control. Compared with off-the-shelf physics engines, a learnable simulator can quickly adapt to unseen objects, scenes, and tasks. However, existing models like interaction networks only work for fully observable systems; they also only consider pairwise interactions within a single time step, both restricting their use in practical systems. We introduce Propagation Networks (PropNet), a differentiable, learnable dynamics model that handles partially observable scenarios and enables instantaneous propagation of signals beyond pairwise interactions. Experiments show that our propagation networks not only outperform current learnable physics engines in forward simulation, but also achieve superior performance on various control tasks. Compared with existing model-free deep reinforcement learning algorithms, model-based control with propagation networks is more accurate, efficient, and generalizable to new, partially observable scenes and tasks.Comment: Accepted to ICRA 2019. Project Page: http://propnet.csail.mit.edu Video: https://youtu.be/ZAxHXegkz4
    • …
    corecore