6,100 research outputs found

    Return-Based Contrastive Representation Learning for Reinforcement Learning

    Full text link
    Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). However, existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns. Our auxiliary loss is theoretically justified to learn representations that capture the structure of a new form of state-action abstraction, under which state-action pairs with similar return distributions are aggregated together. In low data regime, our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite, and achieves even better performance when combined with existing auxiliary tasks.Comment: ICLR 202

    Dealing with Sparse Rewards in Reinforcement Learning

    Full text link
    Successfully navigating a complex environment to obtain a desired outcome is a difficult task, that up to recently was believed to be capable only by humans. This perception has been broken down over time, especially with the introduction of deep reinforcement learning, which has greatly increased the difficulty of tasks that can be automated. However, for traditional reinforcement learning agents this requires an environment to be able to provide frequent extrinsic rewards, which are not known or accessible for many real-world environments. This project aims to explore and contrast existing reinforcement learning solutions that circumnavigate the difficulties of an environment that provide sparse rewards. Different reinforcement solutions will be implemented over a several video game environments with varying difficulty and varying frequency of rewards, as to properly investigate the applicability of these solutions. This project introduces a novel reinforcement learning solution by combining aspects of two existing state of the art sparse reward solutions, curiosity driven exploration and unsupervised auxiliary tasks

    Unsupervised Video Object Segmentation for Deep Reinforcement Learning

    Full text link
    We present a new technique for deep reinforcement learning that automatically detects moving objects and uses the relevant information for action selection. The detection of moving objects is done in an unsupervised way by exploiting structure from motion. Instead of directly learning a policy from raw images, the agent first learns to detect and segment moving objects by exploiting flow information in video sequences. The learned representation is then used to focus the policy of the agent on the moving objects. Over time, the agent identifies which objects are critical for decision making and gradually builds a policy based on relevant moving objects. This approach, which we call Motion-Oriented REinforcement Learning (MOREL), is demonstrated on a suite of Atari games where the ability to detect moving objects reduces the amount of interaction needed with the environment to obtain a good policy. Furthermore, the resulting policy is more interpretable than policies that directly map images to actions or values with a black box neural network. We can gain insight into the policy by inspecting the segmentation and motion of each object detected by the agent. This allows practitioners to confirm whether a policy is making decisions based on sensible information

    Learning Good Representation via Continuous Attention

    Full text link
    In this paper we present our scientific discovery that good representation can be learned via continuous attention during the interaction between Unsupervised Learning(UL) and Reinforcement Learning(RL) modules driven by intrinsic motivation. Specifically, we designed intrinsic rewards generated from UL modules for driving the RL agent to focus on objects for a period of time and to learn good representations of objects for later object recognition task. We evaluate our proposed algorithm in both with and without extrinsic reward settings. Experiments with end-to-end training in simulated environments with applications to few-shot object recognition demonstrated the effectiveness of the proposed algorithm

    Jointly Pre-training with Supervised, Autoencoder, and Value Losses for Deep Reinforcement Learning

    Full text link
    Deep Reinforcement Learning (DRL) algorithms are known to be data inefficient. One reason is that a DRL agent learns both the feature and the policy tabula rasa. Integrating prior knowledge into DRL algorithms is one way to improve learning efficiency since it helps to build helpful representations. In this work, we consider incorporating human knowledge to accelerate the asynchronous advantage actor-critic (A3C) algorithm by pre-training a small amount of non-expert human demonstrations. We leverage the supervised autoencoder framework and propose a novel pre-training strategy that jointly trains a weighted supervised classification loss, an unsupervised reconstruction loss, and an expected return loss. The resulting pre-trained model learns more useful features compared to independently training in supervised or unsupervised fashion. Our pre-training method drastically improved the learning performance of the A3C agent in Atari games of Pong and MsPacman, exceeding the performance of the state-of-the-art algorithms at a much smaller number of game interactions. Our method is light-weight and easy to implement in a single machine. For reproducibility, our code is available at github.com/gabrieledcjr/DeepRL/tree/A3C-ALA2019Comment: Accepted in Adaptive and Learning Agents (ALA) Workshop at AAMA

    SplitNet: Sim2Sim and Task2Task Transfer for Embodied Visual Navigation

    Full text link
    We propose SplitNet, a method for decoupling visual perception and policy learning. By incorporating auxiliary tasks and selective learning of portions of the model, we explicitly decompose the learning objectives for visual navigation into perceiving the world and acting on that perception. We show dramatic improvements over baseline models on transferring between simulators, an encouraging step towards Sim2Real. Additionally, SplitNet generalizes better to unseen environments from the same simulator and transfers faster and more effectively to novel embodied navigation tasks. Further, given only a small sample from a target domain, SplitNet can match the performance of traditional end-to-end pipelines which receive the entire dataset. Code is available https://github.com/facebookresearch/splitne

    DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

    Full text link
    Domain adaptation is an important open problem in deep reinforcement learning (RL). In many scenarios of interest data is hard to obtain, so agents may learn a source policy in a setting where data is readily available, with the hope that it generalises well to the target domain. We propose a new multi-stage RL agent, DARLA (DisentAngled Representation Learning Agent), which learns to see before learning to act. DARLA's vision is based on learning a disentangled representation of the observed environment. Once DARLA can see, it is able to acquire source policies that are robust to many domain shifts - even with no access to the target domain. DARLA significantly outperforms conventional baselines in zero-shot domain adaptation scenarios, an effect that holds across a variety of RL environments (Jaco arm, DeepMind Lab) and base RL algorithms (DQN, A3C and EC).Comment: ICML 201

    Meta reinforcement learning as task inference

    Full text link
    Humans achieve efficient learning by relying on prior knowledge about the structure of naturally occurring tasks. There is considerable interest in designing reinforcement learning (RL) algorithms with similar properties. This includes proposals to learn the learning algorithm itself, an idea also known as meta learning. One formal interpretation of this idea is as a partially observable multi-task RL problem in which task information is hidden from the agent. Such unknown task problems can be reduced to Markov decision processes (MDPs) by augmenting an agent's observations with an estimate of the belief about the task based on past experience. However estimating the belief state is intractable in most partially-observed MDPs. We propose a method that separately learns the policy and the task belief by taking advantage of various kinds of privileged information. Our approach can be very effective at solving standard meta-RL environments, as well as a complex continuous control environment with sparse rewards and requiring long-term memory

    Representation Learning with Contrastive Predictive Coding

    Full text link
    While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universal unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in latent space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments

    InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations

    Full text link
    The goal of imitation learning is to mimic expert behavior without access to an explicit reward signal. Expert demonstrations provided by humans, however, often show significant variability due to latent factors that are typically not explicitly modeled. In this paper, we propose a new algorithm that can infer the latent structure of expert demonstrations in an unsupervised way. Our method, built on top of Generative Adversarial Imitation Learning, can not only imitate complex behaviors, but also learn interpretable and meaningful representations of complex behavioral data, including visual demonstrations. In the driving domain, we show that a model learned from human demonstrations is able to both accurately reproduce a variety of behaviors and accurately anticipate human actions using raw visual inputs. Compared with various baselines, our method can better capture the latent structure underlying expert demonstrations, often recovering semantically meaningful factors of variation in the data.Comment: 14 pages, NIPS 201
    • …
    corecore