8,668 research outputs found

    Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees

    Full text link
    Deep Reinforcement Learning (DRL) has achieved impressive success in many applications. A key component of many DRL models is a neural network representing a Q function, to estimate the expected cumulative reward following a state-action pair. The Q function neural network contains a lot of implicit knowledge about the RL problems, but often remains unexamined and uninterpreted. To our knowledge, this work develops the first mimic learning framework for Q functions in DRL. We introduce Linear Model U-trees (LMUTs) to approximate neural network predictions. An LMUT is learned using a novel on-line algorithm that is well-suited for an active play setting, where the mimic learner observes an ongoing interaction between the neural net and the environment. Empirical evaluation shows that an LMUT mimics a Q function substantially better than five baseline methods. The transparent tree structure of an LMUT facilitates understanding the network's learned knowledge by analyzing feature influence, extracting rules, and highlighting the super-pixels in image inputs.Comment: This paper is accepted by ECML-PKDD 201

    Deep Predictive Policy Training using Reinforcement Learning

    Full text link
    Skilled robot task learning is best implemented by predictive action policies due to the inherent latency of sensorimotor processes. However, training such predictive policies is challenging as it involves finding a trajectory of motor activations for the full duration of the action. We propose a data-efficient deep predictive policy training (DPPT) framework with a deep neural network policy architecture which maps an image observation to a sequence of motor activations. The architecture consists of three sub-networks referred to as the perception, policy and behavior super-layers. The perception and behavior super-layers force an abstraction of visual and motor data trained with synthetic and simulated training samples, respectively. The policy super-layer is a small sub-network with fewer parameters that maps data in-between the abstracted manifolds. It is trained for each task using methods for policy search reinforcement learning. We demonstrate the suitability of the proposed architecture and learning framework by training predictive policies for skilled object grasping and ball throwing on a PR2 robot. The effectiveness of the method is illustrated by the fact that these tasks are trained using only about 180 real robot attempts with qualitative terminal rewards.Comment: This work is submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems 2017 (IROS2017

    Data-efficient learning of feedback policies from image pixels using deep dynamical models

    Get PDF
    Data-efficient reinforcement learning (RL) in continuous state-action spaces using very high-dimensional observations remains a key challenge in developing fully autonomous systems. We consider a particularly important instance of this challenge, the pixels-to-torques problem, where an RL agent learns a closed-loop control policy ( torques ) from pixel information only. We introduce a data-efficient, model-based reinforcement learning algorithm that learns such a closed-loop policy directly from pixel information. The key ingredient is a deep dynamical model for learning a low-dimensional feature embedding of images jointly with a predictive model in this low-dimensional feature space. Joint learning is crucial for long-term predictions, which lie at the core of the adaptive nonlinear model predictive control strategy that we use for closed-loop control. Compared to state-of-the-art RL methods for continuous states and actions, our approach learns quickly, scales to high-dimensional state spaces, is lightweight and an important step toward fully autonomous end-to-end learning from pixels to torques
    • …
    corecore