47 research outputs found

    Reinforcement Learning from Imperfect Demonstrations

    Full text link
    Robust real-world learning should benefit from both demonstrations and interactions with the environment. Current approaches to learning from demonstration and reward perform supervised learning on expert demonstration data and use reinforcement learning to further improve performance based on the reward received from the environment. These tasks have divergent losses which are difficult to jointly optimize and such methods can be very sensitive to noisy demonstrations. We propose a unified reinforcement learning algorithm, Normalized Actor-Critic (NAC), that effectively normalizes the Q-function, reducing the Q-values of actions unseen in the demonstration data. NAC learns an initial policy network from demonstrations and refines the policy in the environment, surpassing the demonstrator's performance. Crucially, both learning from demonstration and interactive refinement use the same objective, unlike prior approaches that combine distinct supervised and reinforcement losses. This makes NAC robust to suboptimal demonstration data since the method is not forced to mimic all of the examples in the dataset. We show that our unified reinforcement learning algorithm can learn robustly and outperform existing baselines when evaluated on several realistic driving games

    Multi-Preference Actor Critic

    Full text link
    Policy gradient algorithms typically combine discounted future rewards with an estimated value function, to compute the direction and magnitude of parameter updates. However, for most Reinforcement Learning tasks, humans can provide additional insight to constrain the policy learning. We introduce a general method to incorporate multiple different feedback channels into a single policy gradient loss. In our formulation, the Multi-Preference Actor Critic (M-PAC), these different types of feedback are implemented as constraints on the policy. We use a Lagrangian relaxation to satisfy these constraints using gradient descent while learning a policy that maximizes rewards. Experiments in Atari and Pendulum verify that constraints are being respected and can accelerate the learning process.Comment: NeurIPS Workshop on Deep RL, 201

    Reinforcement Learning for Nested Polar Code Construction

    Full text link
    In this paper, we model nested polar code construction as a Markov decision process (MDP), and tackle it with advanced reinforcement learning (RL) techniques. First, an MDP environment with state, action, and reward is defined in the context of polar coding. Specifically, a state represents the construction of an (N,K)(N,K) polar code, an action specifies its reduction to an (N,K−1)(N,K-1) subcode, and reward is the decoding performance. A neural network architecture consisting of both policy and value networks is proposed to generate actions based on the observed states, aiming at maximizing the overall rewards. A loss function is defined to trade off between exploitation and exploration. To further improve learning efficiency and quality, an `integrated learning' paradigm is proposed. It first employs a genetic algorithm to generate a population of (sub-)optimal polar codes for each (N,K)(N,K), and then uses them as prior knowledge to refine the policy in RL. Such a paradigm is shown to accelerate the training process, and converge at better performances. Simulation results show that the proposed learning-based polar constructions achieve comparable, or even better, performances than the state of the art under successive cancellation list (SCL) decoders. Last but not least, this is achieved without exploiting any expert knowledge from polar coding theory in the learning algorithms.Comment: 8 pages, 10 figures, propose a multi-stage genetic algorith

    Action Space Shaping in Deep Reinforcement Learning

    Full text link
    Reinforcement learning (RL) has been successful in training agents in various learning environments, including video-games. However, such work modifies and shrinks the action space from the game's original. This is to avoid trying "pointless" actions and to ease the implementation. Currently, this is mostly done based on intuition, with little systematic research supporting the design decisions. In this work, we aim to gain insight on these action space modifications by conducting extensive experiments in video-game environments. Our results show how domain-specific removal of actions and discretization of continuous actions can be crucial for successful learning. With these insights, we hope to ease the use of RL in new environments, by clarifying what action-spaces are easy to learn.Comment: To appear in IEEE Conference on Games 2020. Experiment code is available at https://github.com/Miffyli/rl-action-space-shapin

    Towards intervention-centric causal reasoning in learning agents

    Full text link
    Interventions are central to causal learning and reasoning. Yet ultimately an intervention is an abstraction: an agent embedded in a physical environment (perhaps modeled as a Markov decision process) does not typically come equipped with the notion of an intervention -- its action space is typically ego-centric, without actions of the form `intervene on X'. Such a correspondence between ego-centric actions and interventions would be challenging to hard-code. It would instead be better if an agent learnt which sequence of actions allow it to make targeted manipulations of the environment, and learnt corresponding representations that permitted learning from observation. Here we show how a meta-learning approach can be used to perform causal learning in this challenging setting, where the action-space is not a set of interventions and the observation space is a high-dimensional space with a latent causal structure. A meta-reinforcement learning algorithm is used to learn relationships that transfer on observational causal learning tasks. This work shows how advances in deep reinforcement learning and meta-learning can provide intervention-centric causal learning in high-dimensional environments with a latent causal structure.Comment: 11 page, 4 figures. Presented at ICLR 2020 workshop 'Causal learning for decision making

    Jointly Pre-training with Supervised, Autoencoder, and Value Losses for Deep Reinforcement Learning

    Full text link
    Deep Reinforcement Learning (DRL) algorithms are known to be data inefficient. One reason is that a DRL agent learns both the feature and the policy tabula rasa. Integrating prior knowledge into DRL algorithms is one way to improve learning efficiency since it helps to build helpful representations. In this work, we consider incorporating human knowledge to accelerate the asynchronous advantage actor-critic (A3C) algorithm by pre-training a small amount of non-expert human demonstrations. We leverage the supervised autoencoder framework and propose a novel pre-training strategy that jointly trains a weighted supervised classification loss, an unsupervised reconstruction loss, and an expected return loss. The resulting pre-trained model learns more useful features compared to independently training in supervised or unsupervised fashion. Our pre-training method drastically improved the learning performance of the A3C agent in Atari games of Pong and MsPacman, exceeding the performance of the state-of-the-art algorithms at a much smaller number of game interactions. Our method is light-weight and easy to implement in a single machine. For reproducibility, our code is available at github.com/gabrieledcjr/DeepRL/tree/A3C-ALA2019Comment: Accepted in Adaptive and Learning Agents (ALA) Workshop at AAMA

    Goal-conditioned Imitation Learning

    Full text link
    Designing rewards for Reinforcement Learning (RL) is challenging because it needs to convey the desired task, be efficient to optimize, and be easy to compute. The latter is particularly problematic when applying RL to robotics, where detecting whether the desired configuration is reached might require considerable supervision and instrumentation. Furthermore, we are often interested in being able to reach a wide range of configurations, hence setting up a different reward every time might be unpractical. Methods like Hindsight Experience Replay (HER) have recently shown promise to learn policies able to reach many goals, without the need of a reward. Unfortunately, without tricks like resetting to points along the trajectory, HER might require many samples to discover how to reach certain areas of the state-space. In this work we investigate different approaches to incorporate demonstrations to drastically speed up the convergence to a policy able to reach any goal, also surpassing the performance of an agent trained with other Imitation Learning algorithms. Furthermore, we show our method can also be used when the available expert trajectories do not contain the actions, which can leverage kinesthetic or third person demonstration. The code is available at https://sites.google.com/view/goalconditioned-il/.Comment: Published at NeurIPS 201

    PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning

    Full text link
    Multi-agent path finding (MAPF) is an essential component of many large-scale, real-world robot deployments, from aerial swarms to warehouse automation. However, despite the community's continued efforts, most state-of-the-art MAPF planners still rely on centralized planning and scale poorly past a few hundred agents. Such planning approaches are maladapted to real-world deployments, where noise and uncertainty often require paths be recomputed online, which is impossible when planning times are in seconds to minutes. We present PRIMAL, a novel framework for MAPF that combines reinforcement and imitation learning to teach fully-decentralized policies, where agents reactively plan paths online in a partially-observable world while exhibiting implicit coordination. This framework extends our previous work on distributed learning of collaborative policies by introducing demonstrations of an expert MAPF planner during training, as well as careful reward shaping and environment sampling. Once learned, the resulting policy can be copied onto any number of agents and naturally scales to different team sizes and world dimensions. We present results on randomized worlds with up to 1024 agents and compare success rates against state-of-the-art MAPF planners. Finally, we experimentally validate the learned policies in a hybrid simulation of a factory mockup, involving both real-world and simulated robots.Comment: \c{opyright} 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Hierarchical Deep Q-Network from Imperfect Demonstrations in Minecraft

    Full text link
    We present Hierarchical Deep Q-Network (HDQfD) that took first place in the MineRL competition. HDQfD works on imperfect demonstrations and utilizes the hierarchical structure of expert trajectories. We introduce the procedure of extracting an effective sequence of meta-actions and subgoals from demonstration data. We present a structured task-dependent replay buffer and adaptive prioritizing technique that allow the HDQfD agent to gradually erase poor-quality expert data from the buffer. In this paper, we present the details of the HDQfD algorithm and give the experimental results in the Minecraft domain

    Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

    Full text link
    Despite the remarkable success of Deep RL in learning control policies from raw pixels, the resulting models do not generalize. We demonstrate that a trained agent fails completely when facing small visual changes, and that fine-tuning---the common transfer learning paradigm---fails to adapt to these changes, to the extent that it is faster to re-train the model from scratch. We show that by separating the visual transfer task from the control policy we achieve substantially better sample efficiency and transfer behavior, allowing an agent trained on the source task to transfer well to the target tasks. The visual mapping from the target to the source domain is performed using unaligned GANs, resulting in a control policy that can be further improved using imitation learning from imperfect demonstrations. We demonstrate the approach on synthetic visual variants of the Breakout game, as well as on transfer between subsequent levels of Road Fighter, a Nintendo car-driving game. A visualization of our approach can be seen in https://youtu.be/4mnkzYyXMn4 and https://youtu.be/KCGTrQi6Ogo .Comment: Proceedings of the 36th International Conference on Machine Learning (ICML 2019
    corecore