18 research outputs found

    Transfer Learning to Learn with Multitask Neural Model Search

    Full text link
    Deep learning models require extensive architecture design exploration and hyperparameter optimization to perform well on a given task. The exploration of the model design space is often made by a human expert, and optimized using a combination of grid search and search heuristics over a large space of possible choices. Neural Architecture Search (NAS) is a Reinforcement Learning approach that has been proposed to automate architecture design. NAS has been successfully applied to generate Neural Networks that rival the best human-designed architectures. However, NAS requires sampling, constructing, and training hundreds to thousands of models to achieve well-performing architectures. This procedure needs to be executed from scratch for each new task. The application of NAS to a wide set of tasks currently lacks a way to transfer generalizable knowledge across tasks. In this paper, we present the Multitask Neural Model Search (MNMS) controller. Our goal is to learn a generalizable framework that can condition model construction on successful model searches for previously seen tasks, thus significantly speeding up the search for new tasks. We demonstrate that MNMS can conduct an automated architecture search for multiple tasks simultaneously while still learning well-performing, specialized models for each task. We then show that pre-trained MNMS controllers can transfer learning to new tasks. By leveraging knowledge from previous searches, we find that pre-trained MNMS models start from a better location in the search space and reduce search time on unseen tasks, while still discovering models that outperform published human-designed models

    Auto Deep Compression by Reinforcement Learning Based Actor-Critic Structure

    Full text link
    Model-based compression is an effective, facilitating, and expanded model of neural network models with limited computing and low power. However, conventional models of compression techniques utilize crafted features [2,3,12] and explore specialized areas for exploration and design of large spaces in terms of size, speed, and accuracy, which usually have returns Less and time is up. This paper will effectively analyze deep auto compression (ADC) and reinforcement learning strength in an effective sample and space design, and improve the compression quality of the model. The results of compression of the advanced model are obtained without any human effort and in a completely automated way. With a 4- fold reduction in FLOP, the accuracy of 2.8% is higher than the manual compression model for VGG-16 in ImageNet

    Searching for Activation Functions

    Full text link
    The choice of activation functions in deep networks has a significant effect on the training dynamics and task performance. Currently, the most successful and widely-used activation function is the Rectified Linear Unit (ReLU). Although various hand-designed alternatives to ReLU have been proposed, none have managed to replace it due to inconsistent gains. In this work, we propose to leverage automatic search techniques to discover new activation functions. Using a combination of exhaustive and reinforcement learning-based search, we discover multiple novel activation functions. We verify the effectiveness of the searches by conducting an empirical evaluation with the best discovered activation function. Our experiments show that the best discovered activation function, f(x)=x⋅sigmoid(βx)f(x) = x \cdot \text{sigmoid}(\beta x), which we name Swish, tends to work better than ReLU on deeper models across a number of challenging datasets. For example, simply replacing ReLUs with Swish units improves top-1 classification accuracy on ImageNet by 0.9\% for Mobile NASNet-A and 0.6\% for Inception-ResNet-v2. The simplicity of Swish and its similarity to ReLU make it easy for practitioners to replace ReLUs with Swish units in any neural network.Comment: Updated version of "Swish: a Self-Gated Activation Function

    Neural Architecture Search Over a Graph Search Space

    Full text link
    Neural Architecture Search (NAS) enabled the discovery of state-of-the-art architectures in many domains. However, the success of NAS depends on the definition of the search space. Current search spaces are defined as a static sequence of decisions and a set of available actions for each decision. Each possible sequence of actions defines an architecture. We propose a more expressive class of search space: directed graphs. In our formalism, each decision is a vertex and each action is an edge. This allows us to model iterative and branching architecture design decisions. We demonstrate in simulation, and on image classification experiments, basic iterative and branching search structures, and show that the graph representation improves sample efficiency

    Neural Architecture Search in Embedding Space

    Full text link
    The neural architecture search (NAS) algorithm with reinforcement learning can be a powerful and novel framework for the automatic discovering process of neural architectures. However, its application is restricted by noncontinuous and high-dimensional search spaces, which result in difficulty in optimization. To resolve these problems, we proposed NAS in embedding space (NASES), which is a novel framework. Unlike other NAS with reinforcement learning approaches that search over a discrete and high-dimensional architecture space, this approach enables reinforcement learning to search in an embedding space by using architecture encoders and decoders. The current experiment demonstrated that the performance of the final architecture network using the NASES procedure is comparable with that of other popular NAS approaches for the image classification task on CIFAR-10. The results of the experiment were efficient and indicated that NASES was highly efficient to discover final architecture only in <<3.5 GPU hours. The beneficial-performance and effectiveness of NASES was impressive when the architecture-embedding searching and weight initialization were applied.Comment: 11 page

    Depth Self-Optimized Learning Toward Data Science

    Full text link
    We propose a two-stage model called Depth Self-Optimized Learning (DSOL), which aims to realize ANN depth self-configuration, self-optimization as well as ANN training without manual intervention. In the first stage of DSOL, it will configure ANN of specific depth according to a specific dataset. In the second stage, DSOL will continuously optimize ANN based on Reinforcement Learning (RL). Finally, the optimal depth is returned to the first stage of DSOL for training, so that DSOL can configure the appropriate ANN depth and perform more reasonable optimization when processing similar datasets again. In the experiment, we ran DSOL on the Iris and Boston housing datasets, and the results showed that DSOL performed well. We have uploaded the experiment records and code to our Github

    NASIB: Neural Architecture Search withIn Budget

    Full text link
    Neural Architecture Search (NAS) represents a class of methods to generate the optimal neural network architecture and typically iterate over candidate architectures till convergence over some particular metric like validation loss. They are constrained by the available computation resources, especially in enterprise environments. In this paper, we propose a new approach for NAS, called NASIB, which adapts and attunes to the computation resources (budget) available by varying the exploration vs. exploitation trade-off. We reduce the expert bias by searching over an augmented search space induced by Superkernels. The proposed method can provide the architecture search useful for different computation resources and different domains beyond image classification of natural images where we lack bespoke architecture motifs and domain expertise. We show, on CIFAR10, that itis possible to search over a space that comprises of 12x more candidate operations than the traditional prior art in just 1.5 GPU days, while reaching close to state of the art accuracy. While our method searches over an exponentially larger search space, it could lead to novel architectures that require lesser domain expertise, compared to the majority of the existing methods

    Graph Pruning for Model Compression

    Full text link
    Previous AutoML pruning works utilized individual layer features to automatically prune filters. We analyze the correlation for two layers from different blocks which have a short-cut structure. It is found that, in one block, the deeper layer has many redundant filters which can be represented by filters in the former layer so that it is necessary to take information from other layers into consideration in pruning. In this paper, a graph pruning approach is proposed, which views any deep model as a topology graph. Graph PruningNet based on the graph convolution network is designed to automatically extract neighboring information for each node. To extract features from various topologies, Graph PruningNet is connected with Pruned Network by an individual fully connection layer for each node and jointly trained on a training dataset from scratch. Thus, we can obtain reasonable weights for any size of sub-network. We then search the best configuration of the Pruned Network by reinforcement learning. Different from previous work, we take the node features from well-trained Graph PruningNet, instead of the hand-craft features, as the states in reinforcement learning. Compared with other AutoML pruning works, our method has achieved the state-of-the-art under same conditions on ImageNet-2012. The code will be released on GitHub

    Rethinking the Number of Channels for the Convolutional Neural Network

    Full text link
    Latest algorithms for automatic neural architecture search perform remarkable but few of them can effectively design the number of channels for convolutional neural networks and consume less computational efforts. In this paper, we propose a method for efficient automatic architecture search which is special to the widths of networks instead of the connections of neural architecture. Our method, functionally incremental search based on function-preserving, will explore the number of channels rapidly while controlling the number of parameters of the target network. On CIFAR-10 and CIFAR-100 classification, our method using minimal computational resources (0.4~1.3 GPU-days) can discover more efficient rules of the widths of networks to improve the accuracy by about 0.5% on CIFAR-10 and a~2.33% on CIFAR-100 with fewer number of parameters. In particular, our method is suitable for exploring the number of channels of almost any convolutional neural network rapidly

    AMC: AutoML for Model Compression and Acceleration on Mobile Devices

    Full text link
    Model compression is a critical technique to efficiently deploy neural network models on mobile devices which have limited computation resources and tight power budgets. Conventional model compression techniques rely on hand-crafted heuristics and rule-based policies that require domain experts to explore the large design space trading off among model size, speed, and accuracy, which is usually sub-optimal and time-consuming. In this paper, we propose AutoML for Model Compression (AMC) which leverage reinforcement learning to provide the model compression policy. This learning-based compression policy outperforms conventional rule-based compression policy by having higher compression ratio, better preserving the accuracy and freeing human labor. Under 4x FLOPs reduction, we achieved 2.7% better accuracy than the handcrafted model compression policy for VGG-16 on ImageNet. We applied this automated, push-the-button compression pipeline to MobileNet and achieved 1.81x speedup of measured inference latency on an Android phone and 1.43x speedup on the Titan XP GPU, with only 0.1% loss of ImageNet Top-1 accuracy
    corecore