17,385 research outputs found

    Learning Unmanned Aerial Vehicle Control for Autonomous Target Following

    Full text link
    While deep reinforcement learning (RL) methods have achieved unprecedented successes in a range of challenging problems, their applicability has been mainly limited to simulation or game domains due to the high sample complexity of the trial-and-error learning process. However, real-world robotic applications often need a data-efficient learning process with safety-critical constraints. In this paper, we consider the challenging problem of learning unmanned aerial vehicle (UAV) control for tracking a moving target. To acquire a strategy that combines perception and control, we represent the policy by a convolutional neural network. We develop a hierarchical approach that combines a model-free policy gradient method with a conventional feedback proportional-integral-derivative (PID) controller to enable stable learning without catastrophic failure. The neural network is trained by a combination of supervised learning from raw images and reinforcement learning from games of self-play. We show that the proposed approach can learn a target following policy in a simulator efficiently and the learned behavior can be successfully transferred to the DJI quadrotor platform for real-world UAV control

    Meta-Reinforcement Learning for Adaptive Control of Second Order Systems

    Full text link
    Meta-learning is a branch of machine learning which aims to synthesize data from a distribution of related tasks to efficiently solve new ones. In process control, many systems have similar and well-understood dynamics, which suggests it is feasible to create a generalizable controller through meta-learning. In this work, we formulate a meta reinforcement learning (meta-RL) control strategy that takes advantage of known, offline information for training, such as a model structure. The meta-RL agent is trained over a distribution of model parameters, rather than a single model, enabling the agent to automatically adapt to changes in the process dynamics while maintaining performance. A key design element is the ability to leverage model-based information offline during training, while maintaining a model-free policy structure for interacting with new environments. Our previous work has demonstrated how this approach can be applied to the industrially-relevant problem of tuning proportional-integral controllers to control first order processes. In this work, we briefly reintroduce our methodology and demonstrate how it can be extended to proportional-integral-derivative controllers and second order systems.Comment: AdCONIP 2022. arXiv admin note: substantial text overlap with arXiv:2203.0966

    Reinforcement Learning for UAV Attitude Control

    Full text link
    Autopilot systems are typically composed of an "inner loop" providing stability and control, while an "outer loop" is responsible for mission-level objectives, e.g. way-point navigation. Autopilot systems for UAVs are predominately implemented using Proportional, Integral Derivative (PID) control systems, which have demonstrated exceptional performance in stable environments. However more sophisticated control is required to operate in unpredictable, and harsh environments. Intelligent flight control systems is an active area of research addressing limitations of PID control most recently through the use of reinforcement learning (RL) which has had success in other applications such as robotics. However previous work has focused primarily on using RL at the mission-level controller. In this work, we investigate the performance and accuracy of the inner control loop providing attitude control when using intelligent flight control systems trained with the state-of-the-art RL algorithms, Deep Deterministic Gradient Policy (DDGP), Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO). To investigate these unknowns we first developed an open-source high-fidelity simulation environment to train a flight controller attitude control of a quadrotor through RL. We then use our environment to compare their performance to that of a PID controller to identify if using RL is appropriate in high-precision, time-critical flight control.Comment: 13 pages, 9 figure

    Inverter PQ Control With Trajectory Tracking Capability For Microgrids Based On Physics-informed Reinforcement Learning

    Get PDF
    The increasing penetration of inverter-based resources (IBRs) calls for an advanced active and reactive power (PQ) control strategy in microgrids. To enhance the controllability and flexibility of the IBRs, this paper proposed an adaptive PQ control method with trajectory tracking capability, combining model-based analysis, physics-informed reinforcement learning (RL), and power hardware-in-the-loop (HIL) experiments. First, model-based analysis proves that there exists an adaptive proportional-integral controller with time-varying gains that can ensure any exponential PQ output trajectory of IBRs. These gains consist of a constant factor and an exponentially decaying factor, which are then obtained using a model-free deep reinforcement learning approach known as the twin delayed deeper deterministic policy gradient. With the model-based derivation, the learning space of the RL agent is narrowed down from a function space to a real space, which reduces the training complexity significantly. Finally, the proposed method is verified through numerical simulation in MATLAB-Simulink and power HIL experiments in the CURENT center.With the physics-informed learning method, exponential response time constants can be freely assigned to IBRs, and they can follow any predefined trajectory without complicated gain tuning

    Deep Reinforcement Learning Attitude Control of Fixed-Wing UAVs Using Proximal Policy Optimization

    Full text link
    Contemporary autopilot systems for unmanned aerial vehicles (UAVs) are far more limited in their flight envelope as compared to experienced human pilots, thereby restricting the conditions UAVs can operate in and the types of missions they can accomplish autonomously. This paper proposes a deep reinforcement learning (DRL) controller to handle the nonlinear attitude control problem, enabling extended flight envelopes for fixed-wing UAVs. A proof-of-concept controller using the proximal policy optimization (PPO) algorithm is developed, and is shown to be capable of stabilizing a fixed-wing UAV from a large set of initial conditions to reference roll, pitch and airspeed values. The training process is outlined and key factors for its progression rate are considered, with the most important factor found to be limiting the number of variables in the observation vector, and including values for several previous time steps for these variables. The trained reinforcement learning (RL) controller is compared to a proportional-integral-derivative (PID) controller, and is found to converge in more cases than the PID controller, with comparable performance. Furthermore, the RL controller is shown to generalize well to unseen disturbances in the form of wind and turbulence, even in severe disturbance conditions.Comment: 11 pages, 3 figures, 2019 International Conference on Unmanned Aircraft Systems (ICUAS

    Meta-Reinforcement Learning for the Tuning of PI Controllers: An Offline Approach

    Full text link
    Meta-learning is a branch of machine learning which trains neural network models to synthesize a wide variety of data in order to rapidly solve new problems. In process control, many systems have similar and well-understood dynamics, which suggests it is feasible to create a generalizable controller through meta-learning. In this work, we formulate a meta reinforcement learning (meta-RL) control strategy that can be used to tune proportional--integral controllers. Our meta-RL agent has a recurrent structure that accumulates "context" to learn a system's dynamics through a hidden state variable in closed-loop. This architecture enables the agent to automatically adapt to changes in the process dynamics. In tests reported here, the meta-RL agent was trained entirely offline on first order plus time delay systems, and produced excellent results on novel systems drawn from the same distribution of process dynamics used for training. A key design element is the ability to leverage model-based information offline during training in simulated environments while maintaining a model-free policy structure for interacting with novel processes where there is uncertainty regarding the true process dynamics. Meta-learning is a promising approach for constructing sample-efficient intelligent controllers.Comment: 23 pages; postprin
    • …
    corecore