411 research outputs found

    Contextual Understanding in Neural Dialog Systems: the Integration of External Knowledge Graphs for Generating Coherent and Knowledge-rich Conversations

    Get PDF
    The integration of external knowledge graphs has emerged as a powerful approach to enrich conversational AI systems with coherent and knowledge-rich conversations. This paper provides an overview of the integration process and highlights its benefits. Knowledge graphs serve as structured representations of information, capturing the relationships between entities through nodes and edges. They offer an organized and efficient means of representing factual knowledge. External knowledge graphs, such as DBpedia, Wikidata, Freebase, and Google's Knowledge Graph, are pre-existing repositories that encompass a wide range of information across various domains. These knowledge graphs are compiled by aggregating data from diverse sources, including online encyclopedias, databases, and structured repositories. To integrate an external knowledge graph into a conversational AI system, a connection needs to be established between the system and the knowledge graph. This can be achieved through APIs or by importing a copy of the knowledge graph into the AI system's internal storage. Once integrated, the conversational AI system can query the knowledge graph to retrieve relevant information when a user poses a question or makes a statement. When analyzing user inputs, the conversational AI system identifies entities or concepts that require additional knowledge. It then formulates queries to retrieve relevant information from the integrated knowledge graph. These queries may involve searching for specific entities, retrieving related entities, or accessing properties and attributes associated with the entities. The obtained information is used to generate coherent and knowledge-rich responses. By integrating external knowledge graphs, conversational AI systems can augment their internal knowledge base and provide more accurate and up-to-date responses. The retrieved information allows the system to extract relevant facts, provide detailed explanations, or offer additional context. This integration empowers AI systems to deliver comprehensive and insightful responses that enhance user experience. As external knowledge graphs are regularly updated with new information and improvements, conversational AI systems should ensure their integrated knowledge graphs remain current. This can be achieved through periodic updates, either by synchronizing the system's internal representation with the external knowledge graph or by querying the external knowledge graph in real-time

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Recent Developments in Recommender Systems: A Survey

    Full text link
    In this technical survey, we comprehensively summarize the latest advancements in the field of recommender systems. The objective of this study is to provide an overview of the current state-of-the-art in the field and highlight the latest trends in the development of recommender systems. The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems, and then delves into the category of knowledge-based recommender systems. In addition, the survey analyzes the robustness, data bias, and fairness issues in recommender systems, summarizing the evaluation metrics used to assess the performance of these systems. Finally, the study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field

    Adaptive Vague Preference Policy Learning for Multi-round Conversational Recommendation

    Full text link
    Conversational recommendation systems (CRS) effectively address information asymmetry by dynamically eliciting user preferences through multi-turn interactions. Existing CRS widely assumes that users have clear preferences. Under this assumption, the agent will completely trust the user feedback and treat the accepted or rejected signals as strong indicators to filter items and reduce the candidate space, which may lead to the problem of over-filtering. However, in reality, users' preferences are often vague and volatile, with uncertainty about their desires and changing decisions during interactions. To address this issue, we introduce a novel scenario called Vague Preference Multi-round Conversational Recommendation (VPMCR), which considers users' vague and volatile preferences in CRS.VPMCR employs a soft estimation mechanism to assign a non-zero confidence score for all candidate items to be displayed, naturally avoiding the over-filtering problem. In the VPMCR setting, we introduce an solution called Adaptive Vague Preference Policy Learning (AVPPL), which consists of two main components: Uncertainty-aware Soft Estimation (USE) and Uncertainty-aware Policy Learning (UPL). USE estimates the uncertainty of users' vague feedback and captures their dynamic preferences using a choice-based preferences extraction module and a time-aware decaying strategy. UPL leverages the preference distribution estimated by USE to guide the conversation and adapt to changes in users' preferences to make recommendations or ask for attributes. Our extensive experiments demonstrate the effectiveness of our method in the VPMCR scenario, highlighting its potential for practical applications and improving the overall performance and applicability of CRS in real-world settings, particularly for users with vague or dynamic preferences

    Understanding Your Agent: Leveraging Large Language Models for Behavior Explanation

    Full text link
    Intelligent agents such as robots are increasingly deployed in real-world, safety-critical settings. It is vital that these agents are able to explain the reasoning behind their decisions to human counterparts; however, their behavior is often produced by uninterpretable models such as deep neural networks. We propose an approach to generate natural language explanations for an agent's behavior based only on observations of states and actions, thus making our method independent from the underlying model's representation. For such models, we first learn a behavior representation and subsequently use it to produce plausible explanations with minimal hallucination while affording user interaction with a pre-trained large language model. We evaluate our method in a multi-agent search-and-rescue environment and demonstrate the effectiveness of our explanations for agents executing various behaviors. Through user studies and empirical experiments, we show that our approach generates explanations as helpful as those produced by a human domain expert while enabling beneficial interactions such as clarification and counterfactual queries

    Conversational Process Modelling: State of the Art, Applications, and Implications in Practice

    Full text link
    Chatbots such as ChatGPT have caused a tremendous hype lately. For BPM applications, it is often not clear how to apply chatbots to generate business value. Hence, this work aims at the systematic analysis of existing chatbots for their support of conversational process modelling as process-oriented capability. Application scenarios are identified along the process life cycle. Then a systematic literature review on conversational process modelling is performed. The resulting taxonomy serves as input for the identification of application scenarios for conversational process modelling, including paraphrasing and improvement of process descriptions. The application scenarios are evaluated for existing chatbots based on a real-world test set from the higher education domain. It contains process descriptions as well as corresponding process models, together with an assessment of the model quality. Based on the literature and application scenario analyses, recommendations for the usage (practical implications) and further development (research directions) of conversational process modelling are derived
    • …
    corecore