958 research outputs found

    Learning from Structured Data with High Dimensional Structured Input and Output Domain

    Get PDF
    Structured data is accumulated rapidly in many applications, e.g. Bioinformatics, Cheminformatics, social network analysis, natural language processing and text mining. Designing and analyzing algorithms for handling these large collections of structured data has received significant interests in data mining and machine learning communities, both in the input and output domain. However, it is nontrivial to adopt traditional machine learning algorithms, e.g. SVM, linear regression to structured data. For one thing, the structural information in the input domain and output domain is ignored if applying the normal algorithms to structured data. For another, the major challenge in learning from many high-dimensional structured data is that input/output domain can contain tens of thousands even larger number of features and labels. With the high dimensional structured input space and/or structured output space, learning a low dimensional and consistent structured predictive function is important for both robustness and interpretability of the model. In this dissertation, we will present a few machine learning models that learn from the data with structured input features and structured output tasks. For learning from the data with structured input features, I have developed structured sparse boosting for graph classification, structured joint sparse PCA for anomaly detection and localization. Besides learning from structured input, I also investigated the interplay between structured input and output under the context of multi-task learning. In particular, I designed a multi-task learning algorithms that performs structured feature selection & task relationship Inference. We will demonstrate the applications of these structured models on subgraph based graph classification, networked data stream anomaly detection/localization, multiple cancer type prediction, neuron activity prediction and social behavior prediction. Finally, through my intern work at IBM T.J. Watson Research, I will demonstrate how to leverage structural information from mobile data (e.g. call detail record and GPS data) to derive important places from people's daily life for transit optimization and urban planning

    An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos

    Full text link
    Videos represent the primary source of information for surveillance applications and are available in large amounts but in most cases contain little or no annotation for supervised learning. This article reviews the state-of-the-art deep learning based methods for video anomaly detection and categorizes them based on the type of model and criteria of detection. We also perform simple studies to understand the different approaches and provide the criteria of evaluation for spatio-temporal anomaly detection.Comment: 15 pages, double colum

    Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent Representations

    Full text link
    Uncertainty estimation aims to evaluate the confidence of a trained deep neural network. However, existing uncertainty estimation approaches rely on low-dimensional distributional assumptions and thus suffer from the high dimensionality of latent features. Existing approaches tend to focus on uncertainty on discrete classification probabilities, which leads to poor generalizability to uncertainty estimation for other tasks. Moreover, most of the literature requires seeing the out-of-distribution (OOD) data in the training for better estimation of uncertainty, which limits the uncertainty estimation performance in practice because the OOD data are typically unseen. To overcome these limitations, we propose a new framework using data-adaptive high-dimensional hypothesis testing for uncertainty estimation, which leverages the statistical properties of the feature representations. Our method directly operates on latent representations and thus does not require retraining the feature encoder under a modified objective. The test statistic relaxes the feature distribution assumptions to high dimensionality, and it is more discriminative to uncertainties in the latent representations. We demonstrate that encoding features with Bayesian neural networks can enhance testing performance and lead to more accurate uncertainty estimation. We further introduce a family-wise testing procedure to determine the optimal threshold of OOD detection, which minimizes the false discovery rate (FDR). Extensive experiments validate the satisfactory performance of our framework on uncertainty estimation and task-specific prediction over a variety of competitors. The experiments on the OOD detection task also show satisfactory performance of our method when the OOD data are unseen in the training. Codes are available at https://github.com/HKU-MedAI/bnn_uncertainty.Comment: NeurIPS 202
    • …
    corecore