5 research outputs found

    Solution Path for Manifold Regularized Semisupervised Classification

    Full text link

    Context-driven Object Detection and Segmentation with Auxiliary Information

    No full text
    One fundamental problem in computer vision and robotics is to localize objects of interest in an image. The task can either be formulated as an object detection problem if the objects are described by a set of pose parameters, or an object segmentation one if we recover object boundary precisely. A key issue in object detection and segmentation concerns exploiting the spatial context, as local evidence is often insufficient to determine object pose in the presence of heavy occlusions or large object appearance variations. This thesis addresses the object detection and segmentation problem in such adverse conditions with auxiliary depth data provided by RGBD cameras. We focus on four main issues in context-aware object detection and segmentation: 1) what are the effective context representations? 2) how can we work with limited and imperfect depth data? 3) how to design depth-aware features and integrate depth cues into conventional visual inference tasks? 4) how to make use of unlabeled data to relax the labeling requirements for training data? We discuss three object detection and segmentation scenarios based on varying amounts of available auxiliary information. In the first case, depth data are available for model training but not available for testing. We propose a structured Hough voting method for detecting objects with heavy occlusion in indoor environments, in which we extend the Hough hypothesis space to include both the object's location, and its visibility pattern. We design a new score function that accumulates votes for object detection and occlusion prediction. In addition, we explore the correlation between objects and their environment, building a depth-encoded object-context model based on RGBD data. In the second case, we address the problem of localizing glass objects with noisy and incomplete depth data. Our method integrates the intensity and depth information from a single view point, and builds a Markov Random Field that predicts glass boundary and region jointly. In addition, we propose a nonparametric, data-driven label transfer scheme for local glass boundary estimation. A weighted voting scheme based on a joint feature manifold is adopted to integrate depth and appearance cues, and we learn a distance metric on the depth-encoded feature manifold. In the third case, we make use of unlabeled data to relax the annotation requirements for object detection and segmentation, and propose a novel data-dependent margin distribution learning criterion for boosting, which utilizes the intrinsic geometric structure of datasets. One key aspect of this method is that it can seamlessly incorporate unlabeled data by including a graph Laplacian regularizer. We demonstrate the performance of our models and compare with baseline methods on several real-world object detection and segmentation tasks, including indoor object detection, glass object segmentation and foreground segmentation in video

    Regularized Boost for Semi-Supervised Learning

    No full text
    Semi-supervised inductive learning concerns how to learn a decision rule from a data set containing both labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes local smoothness constraints among data into account during ensemble learning. In this paper, we introduce a local smoothness regularizer to semi-supervised boosting algorithms based on the universal optimization framework of margin cost functionals. Our regularizer is applicable to existing semi-supervised boosting algorithms to improve their generalization and speed up their training. Comparative results on synthetic, benchmark and real world tasks demonstrate the effectiveness of our local smoothness regularizer. We discuss relevant issues and relate our regularizer to previous work.
    corecore