142,793 research outputs found

    The use of Pauli-Villars' regularization in string theory

    Get PDF
    The proper-time regularization of bosonic string reproduces the results of canonical quantization in a special scaling limit where the length in target space has to be renormalized. We repeat the analysis for the Pauli-Villars regularization and demonstrate the universality of the results. In the mean-field approximation we compute the susceptibility anomalous dimension and show it equals 1/2. We discuss the relation with the previously known results on lattice strings.Comment: 1+22 p

    Low energy proton-proton scattering in effective field theory

    Full text link
    Low energy proton-proton scattering is studied in pionless effective field theory. Employing the dimensional regularization and MS-bar and power divergence subtraction schemes for loop calculation, we calculate the scattering amplitude in 1S0 channel up to next-to-next-to leading order and fix low-energy constants that appear in the amplitude by effective range parameters. We study regularization scheme and scale dependence in separation of Coulomb interaction from the scattering length and effective range for the S-wave proton-proton scattering.Comment: 23 pages, 6 eps figures, revised considerably, accepted for publication in Phys. Rev.

    Renormalization of the singular attractive 1/r41/r^4 potential

    Get PDF
    We study the radial Schr\"odinger equation for a particle of mass mm in the field of a singular attractive g2/r4g^2/{r^4} potential with particular emphasis on the bound states problem. Using the regularization method of Beane \textit{et al.}, we solve analytically the corresponding ``renormalization group flow" equation. We find in agreement with previous studies that its solution exhibits a limit cycle behavior and has infinitely many branches. We show that a continuous choice for the solution corresponds to a given fixed number of bound states and to low energy phase shifts that vary continuously with energy. We study in detail the connection between this regularization method and a conventional method modifying the short range part of the potential with an infinitely repulsive hard core. We show that both methods yield bound states results in close agreement even though the regularization method of Beane \textit{et al.} does not include explicitly any new scale in the problem. We further illustrate the use of the regularization method in the computation of electron bound states in the field of neutral polarizable molecules without dipole moment. We find the binding energy of s-wave polarization bound electrons in the field of C60_{60} molecules to be 17 meV for a scattering length corresponding to a hard core radius of the size of the molecule radius (3.37\sim 3.37 \AA). This result can be further compared with recent two-parameter fits using the Lennard-Jones potential yielding binding energies ranging from 3 to 25 meV.Comment: 8 page
    corecore